Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x^3-8x^2+8x\)
\(=2x^3-4x^2-4x^2+8x\)
\(=\left(2x^3-4x^2\right)-\left(4x^2-8x\right)\)
\(=2x\left(x-2\right)-4x\left(x-2\right)\)
\(=\left(2x-4x\right)\left(x-2\right)\)
\(b,2x^2-3x-5=2x^2-5x+2x-5\)
\(=\left(2x^2-5x\right)+\left(2x-5\right)=x\left(2x-5\right)+\left(2x-5\right)\)
\(=\left(x+1\right)\left(2x-5\right)\)
\(c,x^2y-x^3-9y+9x\)
\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(x^2-9\right)\left(y-x\right)\)
Câu 2:
a) \(ĐKXĐ:x\ne1\)
\(A=\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\div\left(1-\frac{2x}{x^2+1}\right)\)
\(\Leftrightarrow A=\left(\frac{1}{x-1}-\frac{2x}{\left(x-1\right)\left(x^2+1\right)}\right)\div\frac{x^2-2x+1}{x^2+1}\)
\(\Leftrightarrow A=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\div\frac{\left(x-1\right)^2}{x^2+1}\)
\(\Leftrightarrow A=\frac{\left(x-1\right)^2\left(x^2+1\right)}{\left(x-1\right)\left(x^2+1\right)\left(x-1\right)^2}\)
\(\Leftrightarrow A=\frac{1}{x-1}\)
b) Để A > 0
\(\Leftrightarrow x-1>0\)(Vì\(1>0\))
\(\Leftrightarrow x>1\)
Bài 1:
a) \(x^3-5x^2+8x-4\)
\(=x^3-4x^2+4x-x^2+4x-4\) \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)
b) Ta có: \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Với \(x\in Z\)thì \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)
Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.
Bài 1:
a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4
=x(x2-4x-4)-(x2-4x+4)
=(x-1) (x-2)2
b)Xét:
\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)
=\(5x+4+\frac{7}{2x-3}\)
Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc Z => 7 /\ (2x-3)
Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B
c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)
=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)
=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)
=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)
=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)
=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)
=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh
Bài 2 )
a)(x2+x)2+4(x2+x)=12 đặt y=x2+x
y2+4y-12=0 <=>y2+6y-2y-12=0
<=>(y+6)(y-2)=0 <=> y=-6;y=2
>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x
>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0
<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=> x=-2;x-1
Vậy nghiệm của phương trình x=-2;x=1
b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)
=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
Nhờ OLM xét giùm em vs ạ !
Câu 1.
B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )
= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2
= 18x2 + 18x + 3
| x | = 2 => x = ±2
Với x = 2 => B = 18.22 + 18.2 + 3 = 111
Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39
C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )
= 4x2 + 4xy + y2 + xy - xz - y2 + yz
= 4x2 + 5xy - xz + yz
Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9
Câu 2.
Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )
Theo đề bài ta có :
( a + 1 )( a + 2 ) - a( a + 1 ) = 50
<=> a2 + 3a + 2 - a2 - a = 50
<=> 2a + 2 = 50
<=> 2a = 48
<=> a = 24 ( tmđk )
=> a + 1 = 25 ; a + 2 = 26
Vậy ba số cần tìm là 24 ; 25 ; 26
Câu 3.
Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4
( x + y )( x3 - x2y + xy2 - y3 )
= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4
= x4 - y4 ( đpcm )
Câu 1 :
\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)
\(=18x^2-4x-7\)
Với \(|x|=2\Rightarrow x=\pm2\)
Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)
Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)
Câu b tương tự
Câu 2 :
Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .
Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)
\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)
\(\Leftrightarrow2a=48\)
\(\Leftrightarrow a=24\)
Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .
Câu 3 :
Ta có :
\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)
\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)
\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)
\(=x^4-y^4\)
=> đpcm
Câu 20:
a: \(2x^3-8x^2+8x=2x\left(x-2\right)^2\)
b: \(2xy+2x+yz+z=\left(y+1\right)\left(2x+z\right)\)
c: \(x^2+2x+1-y^2=\left(x+1-y\right)\left(x+1+y\right)\)