Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
\(\Rightarrow\frac{a+b}{c}-\frac{c}{c}=\frac{a+c}{b}-\frac{b}{b}=\frac{b+c}{a}-\frac{a}{a}\)
\(\frac{a+b}{c}-1=\frac{c+b}{a}-1=\frac{a+c}{b}-1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Vậy \(P=\left(a+b\right)\left(b+c\right)\left(c+a\right)=2c.2a.2b=8abc\)
mà \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\Rightarrow8abc=abc\Rightarrow abc=0\Rightarrow P=0\)
(a+b-c)/c+2 =(b+c-a)/c+2 =(c+a-b)/c+2
rồi bạn tự làm tiếp nhé
xét 2 trường hợp
thay vào thôi nhé bạn
Nhớ k cho mình nhé
a. Tại x=\(\frac{-1}{2}\), ta có:
\(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)
b. Ta có:
\(x^2+4x+3=0\)
\(\Rightarrow x^2+x+3x+3=0\)
\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)
\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)
Vậy \(x=-1;x=-3\)
a) \(A=3x+15=0\)
\(\Rightarrow3\left(x+5\right)=0\)
\(\Rightarrow x+5=0\)
\(\Rightarrow x=-5\)
b) \(B=2x^2-32=0\)
\(\Rightarrow2\left(x^2-16\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\Rightarrow x=4\\x+4=0\Rightarrow x=-4\end{matrix}\right.\)