Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/19452 < 1/ 1944.1945
1/19462 < 1/ 1945.1946
....
1/19752 < 1/ 1974.1975
=> 1/119452 +1/119462+....+1/119752 < 1/ 1944.1945+1/ 1945.1946+..+1/ 1974.1975=1/1944-1/1945+1/1945-1/1946+....+1/1974-1/1975
=1/19444-1/1975<1/1944
\(\dfrac{1}{1945^2}< \dfrac{1}{1944^2}\\ \dfrac{1}{1946^2}< \dfrac{1}{1944^2}\\ \dfrac{1}{1947^2}< \dfrac{1}{1944^2}\\ ...\\ \dfrac{1}{1975^2}< \dfrac{1}{1944^2}\\ \Leftrightarrow\dfrac{1}{1945^2}+\dfrac{1}{1946^2}+\dfrac{1}{1947^2}+...+\dfrac{1}{1975^2}< \dfrac{1}{1944^2}+\dfrac{1}{1944^2}+\dfrac{1}{1944^2}+...+\dfrac{1}{1944^2}\left(31\text{ số }\dfrac{1}{1944^2}\right)=31\cdot\dfrac{1}{1944^2}< 1944\cdot\dfrac{1}{1944^2}=\dfrac{1}{1944}\)
Vậy \(\dfrac{1}{1945^2}+\dfrac{1}{1946^2}+\dfrac{1}{1947^2}+...+\dfrac{1}{1975^2}< \dfrac{1}{1944}\)
Có : 1/1945^2 + 1/1946^2 + ...... + 1/1975^2
< 1/1944.1945 + 1/1945.1946 + ...... + 1/1974.1975
= 1/1944 - 1/1945 +1/1945 - 1/1946 + ...... + 1/1974 - 1/1975
= 1/1944 - 1/1975
< 1/1944
Tk mk nha
Ta có \(\frac{1}{1945^2}+\frac{1}{1946^2}+\frac{1}{1947^2}+...+\frac{1}{1975^2}\)
\(< \frac{1}{1944\cdot1945}+\frac{1}{1945\cdot1946}+...+\frac{1}{1974.1975}\)
\(=\frac{1}{1944}-\frac{1}{1945}+\frac{1}{1945}-\frac{1}{1946}+...+\frac{1}{1974}-\frac{1}{1975}\)
=\(\frac{1}{1944}-\frac{1}{1975}< \frac{1}{1944}\)
\(\Rightarrow\frac{1}{1945^2}+\frac{1}{1946^2}+\frac{1}{1947^2}+..+\frac{1}{1975^2}< \frac{1}{1944}\)
Waz dễ
Gọi số cần tìm là a
Ta thấy:
Khi thêm 1 đơn vị vào số dư ta đc số đó chia hết cho 1946
1945 + 1 = 1946 chia hết cho 1946
Mà bội của 1946 chia hết cho 1946 nên a = B(1946)
\(B\left(1946\right)=\left\{1946;3892;5838;...\right\}\)
Mà a : 1946 dư 1945
Tổng các chữ số (TCCS) của a là 22 mà
TCCS 1946 = 1+9+4+6 = 20
.......... 3892 = 3 + 8 +9 + 2 = 22
Ta thấy số 3982 đáp ứng điều kiện TCCS = 22
Nếu\(a+1⋮1946 thì \left(a-1\right):1946 sẽ dư 1\)
Do đó a = 3982 - 1 = 3981
ĐS = 3981
=3892 đúng thì tk nhé