Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 1/1945^2 + 1/1946^2 + ...... + 1/1975^2
< 1/1944.1945 + 1/1945.1946 + ...... + 1/1974.1975
= 1/1944 - 1/1945 +1/1945 - 1/1946 + ...... + 1/1974 - 1/1975
= 1/1944 - 1/1975
< 1/1944
Tk mk nha
Ta có \(\frac{1}{1945^2}+\frac{1}{1946^2}+\frac{1}{1947^2}+...+\frac{1}{1975^2}\)
\(< \frac{1}{1944\cdot1945}+\frac{1}{1945\cdot1946}+...+\frac{1}{1974.1975}\)
\(=\frac{1}{1944}-\frac{1}{1945}+\frac{1}{1945}-\frac{1}{1946}+...+\frac{1}{1974}-\frac{1}{1975}\)
=\(\frac{1}{1944}-\frac{1}{1975}< \frac{1}{1944}\)
\(\Rightarrow\frac{1}{1945^2}+\frac{1}{1946^2}+\frac{1}{1947^2}+..+\frac{1}{1975^2}< \frac{1}{1944}\)
\(\dfrac{1}{1945^2}< \dfrac{1}{1944^2}\\ \dfrac{1}{1946^2}< \dfrac{1}{1944^2}\\ \dfrac{1}{1947^2}< \dfrac{1}{1944^2}\\ ...\\ \dfrac{1}{1975^2}< \dfrac{1}{1944^2}\\ \Leftrightarrow\dfrac{1}{1945^2}+\dfrac{1}{1946^2}+\dfrac{1}{1947^2}+...+\dfrac{1}{1975^2}< \dfrac{1}{1944^2}+\dfrac{1}{1944^2}+\dfrac{1}{1944^2}+...+\dfrac{1}{1944^2}\left(31\text{ số }\dfrac{1}{1944^2}\right)=31\cdot\dfrac{1}{1944^2}< 1944\cdot\dfrac{1}{1944^2}=\dfrac{1}{1944}\)
Vậy \(\dfrac{1}{1945^2}+\dfrac{1}{1946^2}+\dfrac{1}{1947^2}+...+\dfrac{1}{1975^2}< \dfrac{1}{1944}\)
1/19452 < 1/ 1944.1945
1/19462 < 1/ 1945.1946
....
1/19752 < 1/ 1974.1975
=> 1/119452 +1/119462+....+1/119752 < 1/ 1944.1945+1/ 1945.1946+..+1/ 1974.1975=1/1944-1/1945+1/1945-1/1946+....+1/1974-1/1975
=1/19444-1/1975<1/1944
\(\frac{1}{1975^2}+\frac{1}{1976^2}+...+\frac{1}{2017^2}< \frac{1}{1974.1975}+\frac{1}{1975.1976}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{1974}-\frac{1}{1975}+\frac{1}{1975}-\frac{1}{1976}+...+\frac{1}{2016}-\frac{1}{2017}=\frac{1}{1974}-\frac{1}{2017}< \frac{1}{1974}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}\)
\(\Rightarrow B< \frac{8}{8}=1\)
Vậy \(B< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
nhan xet1/2^2<1/1.2=1/1-1/2
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
..................................
1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/8<
1/1-1/8=8/8-1/8=7/8<1 vay B<1
Cho em mượn acc bang bang
em có làm được bài này ko?