Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2\cdot8^4\cdot27^2+44\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)
\(=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot11\cdot2^9\cdot3^9}{2^7\cdot3^7\cdot2^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9\cdot11}{2^{14}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\cdot11\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)
\(=\dfrac{2\cdot301}{3\cdot31}=\dfrac{602}{93}\)
a, -(-12) + (+19) - (+12) + 8 - 19
= 12 + 19 - 12 + 8 - 19
= ( 12 - 12) + ( 19- 19) + 8
= 0 + 0 + 8
= 8
b, (59 - 78) - (42 - 78 + 59)
= 59 - 78 - 42 + 78 - 59
= (59 - 59) - 42 - ( 78 - 78)
= 0 - 42 - 0
= -42
c, ( - 68 + 103) - (-50 - 68 + 103)
= -68 + 103 + 50 + 68 - 103
= (-68 + 68) + ( 103 - 103) + 50
= 0 + 0 + 50
= 50
a) \(...=12+19-12+8-19=8\)
b) \(...=-19-23=-42\)
c) \(...=35-\left(-15\right)=35+15=50\)
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{y-x}{11-8}=\dfrac{-42}{3}=-14\)
Do đó: x=-112;y=-154
\(\sqrt{40}+\sqrt{2}=\dfrac{42}{\sqrt{40}-\sqrt{2}}\)
\(\sqrt{42}=\dfrac{42}{\sqrt{42}}\)
mà \(\sqrt{40}-\sqrt{2}< \sqrt{42}\)
nên \(\sqrt{40}+\sqrt{2}>\sqrt{42}\)
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}=0\)
\(\frac{13}{42}-\left(\frac{55}{42}-78\right)\left(-\frac{1}{2}\right)^3\)
\(=\frac{13}{42}-\left(\frac{55}{42}-78\right)\left(-\frac{1}{8}\right)\)
\(=\frac{13}{42}+\frac{3221}{42}.\left(-\frac{1}{8}\right)\)
\(=\frac{13}{42}+-\frac{3221}{42}\)
\(=-\frac{1604}{21}\)