Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=1+3+3^2+....+3^2000
3a=3(1+3+3^2+....+3^2000)
3a=3+3^2+3^3+....+3^2001
3a-a=(3+3^2+3^3+....+3^2001)-(1+3+3^2+....+3^2000)
2a=3^2001-1(1)
Mà 2a=3^n-1.Từ (1)=>n=2001
Vậy n =2001
3A=3+32+33+...........+32001
3A-A=(3+32+33+.............+32001)-(1+3+32+...........+32000)
3A-A=32001-1
=>2A=32001-3
=>n=2001
ta có 3a = 3 ( 1+ 3 + 3^2 + 3^3 +........+ 3^2000 ) = 3 + 3^2 + 3^3+.......+ 3^2001
ta cũng có 2a = 3a -a = 3 + 3^2 + 3^3 +.......+ 3^2001 - 1 + 3 + 3^2 + 3^3 +.......+ 3^2000
= 3^2001 - 1. vậy n= 2001
3A-A=3(1+3+32+33+…+32000)-(1+3+32+33+…+32000)
2A=3+32+33+…+32001-1-3-32-33-…-32000
2A=32001-1=3n-1<=>32001=3n
=>n=2001
Ta có: 3A = 3 + 32 + 33 + ..... + 32001
3A - A = 32001 - 1
2A = 32001 - 1
Vậy n = 2001
\(A\cdot\left(3-1\right)=\left(3-1\right)\left(3^{2000}+3^{1999}+...+3^2+3+1\right).\)
\(2A=3^{2001}+3^{2000}+3^{1999}+...+3^2+3-\left(3^{2000}+3^{1999}+...+3+1\right)=3^{2001}-1\)
Theo để bài thì \(2A=3^n-1\). Vậy \(n=2001.\)
Ta có : A = 1 + 32 + 33 + ....... + 32000
=> 3A = 32 + 33 + ....... + 32001
=> 3A - A = 32001 - 1
=> 2A = 32001 - 1
=> n = 2001
nhân cả 2 vế của A với 3, ta được:
3A = 3,( 1+32+33+...+31999+32000)
=> 3A = 3 +32+33+...+32000+32001 (1)
trừ (1) cho A ta được:
3A - A = ( 3+32+33+...+32000+32001) - (1+32+33+...+31999+32000)
=> 2A = 3+ 32+33+...+32000+32001 - 1 -32-33-...-31999-32000
=> 2A = 32001-1
=> A = (32001-1) :2
Nhân cả hai vế của A với 3 , ta được :
3A = 3.( 1 + 3 + 32 + 33 + ... + 31999 + 32000 )
=> 3A = 3 + 32 + 33 + 34 + .... + 32000 + 32001 ( 1 )
Trừ ( 1 ) cho A , ta được :
3A - A = ( 3 + 32 + 33 + 34 + .... + 32000 + 32001 ) - ( 1 + 3 + 32 + 33 + ... + 31999 + 32000 )
=> 2A = 3 + 32 + 33 + 34 + .... + 32000 + 32001 - 1 - 3 - 32 - 33 - .... - 31999 - 32000
=> 2A = 32001 - 1
=> A = ( 32001 - 1 ) : 2
Ta có:
\(A=1+3+3^2+.........+3^{2000}\)
\(\Rightarrow3.A=3+3^2+3^3+...........+3^{2001}\)
Khi đó: \(3.A-A=\left(3+3^2+3^3+......+3^{2001}\right)-\left(1+3+3^2+......+3^{2000}\right)\)
\(\Rightarrow2.A=3^{2001}-1\)
\(\Rightarrow n=2001\)
Vậy: n = 2001.
bạn tra ông google đi
100% đúng nha(^-^)
Đặt A= 1 + 3 +32+33+.....+32000.
3A= 3 +32+33+.....+32001
3A - A = 3 +32+33+.....+32001 - (1 + 3 +32+33+.....+32000)
2A = 32001 - 1
=> A = \(\frac{3^{2001}-1}{2}\)