K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

3A-A=3(1+3+32+33+…+32000)-(1+3+32+33+…+32000)

2A=3+32+33+…+32001-1-3-32-33-…-32000

2A=32001-1=3n-1<=>32001=3n

=>n=2001

4 tháng 6 2016

Ta có: 3A = 3 + 32 + 33 + ..... + 32001

          3A - A = 32001 - 1

          2A = 32001​ - 1

Vậy n = 2001

4 tháng 6 2016

\(A\cdot\left(3-1\right)=\left(3-1\right)\left(3^{2000}+3^{1999}+...+3^2+3+1\right).\)

\(2A=3^{2001}+3^{2000}+3^{1999}+...+3^2+3-\left(3^{2000}+3^{1999}+...+3+1\right)=3^{2001}-1\)

Theo để bài thì \(2A=3^n-1\). Vậy \(n=2001.\)

8 tháng 3 2017

Ta có : A = 1 + 32 + 33 + ....... + 32000

=> 3A =  32 + 33 + ....... + 32001 

=> 3A - A = 32001 - 1

=> 2A = 32001 - 1

=> n = 2001

8 tháng 3 2017

nhân cả 2 vế của A với 3, ta được:

3A = 3,( 1+32+33+...+31999+32000)

=> 3A = 3 +32+33+...+32000+32001   (1)

trừ (1) cho A ta được:

3A - A = ( 3+32+33+...+32000+32001) - (1+32+33+...+31999+32000)

=> 2A = 3+ 32+33+...+32000+32001 - 1 -32-33-...-31999-32000

=> 2A = 32001-1

=> A = (32001-1) :2

15 tháng 3 2017

n = không biết  :))))

15 tháng 3 2017

Ta có:

         \(A=1+3+3^2+.........+3^{2000}\)

\(\Rightarrow3.A=3+3^2+3^3+...........+3^{2001}\)

Khi đó: \(3.A-A=\left(3+3^2+3^3+......+3^{2001}\right)-\left(1+3+3^2+......+3^{2000}\right)\)

\(\Rightarrow2.A=3^{2001}-1\)

\(\Rightarrow n=2001\)

Vậy: n = 2001.

15 tháng 1 2016

2a)

ta co: A=3^0+3^1+3^2+...........+3^2009

=>2A=3^1+3^2+3^3+...........+3^2010

=>2A=3^2010-3^0=3^2012-1

=>2A<3^2010

18 tháng 3 2017

n=2001

28 tháng 3 2016

3A=3+3^2+3^3+...+3^2001

3A-A=(3+3^2+3^3+...+3^2001)-(1+3+3^2+...+3^2000)

2A=3^2001-1

Mà 2A=3^n-1

=>3^n-1=3^2001-1

=>3^n=3^2001

=>n=2001

27 tháng 6 2016

\(A=1+3+3^2+3^3+...+3^{2000}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2001}\)

\(\Rightarrow3A-A=3^{2001}-1\)

\(\Rightarrow2A=3^{2001}-1\)

\(\Rightarrow A=2001\)