Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3A = 3 + 32 + 33 + ..... + 32001
3A - A = 32001 - 1
2A = 32001 - 1
Vậy n = 2001
\(A\cdot\left(3-1\right)=\left(3-1\right)\left(3^{2000}+3^{1999}+...+3^2+3+1\right).\)
\(2A=3^{2001}+3^{2000}+3^{1999}+...+3^2+3-\left(3^{2000}+3^{1999}+...+3+1\right)=3^{2001}-1\)
Theo để bài thì \(2A=3^n-1\). Vậy \(n=2001.\)
Ta có : A = 1 + 32 + 33 + ....... + 32000
=> 3A = 32 + 33 + ....... + 32001
=> 3A - A = 32001 - 1
=> 2A = 32001 - 1
=> n = 2001
nhân cả 2 vế của A với 3, ta được:
3A = 3,( 1+32+33+...+31999+32000)
=> 3A = 3 +32+33+...+32000+32001 (1)
trừ (1) cho A ta được:
3A - A = ( 3+32+33+...+32000+32001) - (1+32+33+...+31999+32000)
=> 2A = 3+ 32+33+...+32000+32001 - 1 -32-33-...-31999-32000
=> 2A = 32001-1
=> A = (32001-1) :2
Ta có:
\(A=1+3+3^2+.........+3^{2000}\)
\(\Rightarrow3.A=3+3^2+3^3+...........+3^{2001}\)
Khi đó: \(3.A-A=\left(3+3^2+3^3+......+3^{2001}\right)-\left(1+3+3^2+......+3^{2000}\right)\)
\(\Rightarrow2.A=3^{2001}-1\)
\(\Rightarrow n=2001\)
Vậy: n = 2001.
2a)
ta co: A=3^0+3^1+3^2+...........+3^2009
=>2A=3^1+3^2+3^3+...........+3^2010
=>2A=3^2010-3^0=3^2012-1
=>2A<3^2010
3A=3+3^2+3^3+...+3^2001
3A-A=(3+3^2+3^3+...+3^2001)-(1+3+3^2+...+3^2000)
2A=3^2001-1
Mà 2A=3^n-1
=>3^n-1=3^2001-1
=>3^n=3^2001
=>n=2001
3A-A=3(1+3+32+33+…+32000)-(1+3+32+33+…+32000)
2A=3+32+33+…+32001-1-3-32-33-…-32000
2A=32001-1=3n-1<=>32001=3n
=>n=2001