Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ღᏠᎮღĐiền❤RaiBo༻꧂
Phải giải chi tiết ra chứ, bài dễ mak, lớp 6 cx lm đc
Câu trả lời là
0-1-2-3-4-5-6-7-8-9
a) 2057 1 số đúng, đúng vị trí
b) 4586 0 số đúng
c) 9041 1 số đúng, sai vị trí
d) 7229 2 số đúng, 1 số đúng vị trí và 1 số sai vị trí
e) 3479 1 số đúng, sai vị trí
Xét theo đk đúng sai của các số trong dãy 4 chữ số
Trước tiên, theo b), loại hết 4 số 4,5,8,6
=> Còn 0,1,2,3,7,9
Tiếp theo, theo a) và c), loại tiếp 0, vị nếu 0 đúng, không thể vừa đứng đúng và cả sai vị trí
=> Còn 1,2,3,7,9
Tiếp theo, xét trường hợp
*Nếu 7 đúng (TH1)
=> theo a), số 2 sai
=> theo TH1, a) và d), 9 đúng
Nhưng, theo e) (đk:1 số đúng), 7 và 9 không thể cùng đúng (vô lý)
Nên, 7 sai
=> Còn 1,2,3,9
*Nếu 9 đúng (TH2)
=> theo e), 3 và 7 sai
Nhưng theo TH2 và e) (đk:2 số đúng), 2 đều đúng và sai vì có tận 2 số 2 (vô lý)
Nên 9 sai
=> Còn 1,2,3 và có 2 số 2 trong dãy 4 chữ số
Xét theo vị trí đúng sai của các số trong dãy 4 chữ số
Theo a), vị trí đầu tiên thuộc về số 2 (2xxx)
Theo d), vị trí thứ hai và ba, một trong hai sẽ thuộc về số 2 khác (22xx hoặc 2x2x)
Theo c), 1 không thể đứng cuối, nên vị trí cuối thuộc về số 3 (thỏa mãn yêu cầu của e) là 3 không đứng đầu) (22x3 hoặc 2x23)
Vị trí còn lại thuộc về số 1, 2 số có khả năng là dãy số đề yêu cầu sẽ là 2213 hoặc 2123.
Xin hết!!
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
1 + 1 =2
2 + 3 =5
4 + 4 =8
5 + 5 =10
12 + 12 =24
10 + 10 =20
16.
\(\overrightarrow{n_{\left(P\right)}}=\left(2;1;-1\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(1;-2;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(-1;-3;-5\right)\)
\(\Rightarrow\) Giao tuyến 2 mp nhận \(\left(-1;-3;-5\right)\) hoặc \(\left(1;3;5\right)\) là 1 vtcp
17.
Đường thẳng nhận \(\left(2;-3;6\right)\) là 1 vtcp
Pt tham số: \(\left\{{}\begin{matrix}x=-2+2t\\y=4-3t\\z=3+6t\end{matrix}\right.\)
Pt chính tắc: \(\frac{x+2}{2}=\frac{y-4}{-3}=\frac{z-3}{6}\)
18.
Pt tham số đường thẳng d qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=-2+t\\y=1+t\\z=5-t\end{matrix}\right.\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(-2+t+1+t-5+t+9=0\Rightarrow t=-1\) \(\Rightarrow H\left(-3;0;6\right)\)
19.
Pt mặt phẳng (P) qua A và vuông góc d:
\(3\left(x-4\right)+2\left(y+3\right)-z=0\)
\(\Leftrightarrow3x+2y-z-6=0\)
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t=0\Rightarrow t=\frac{5}{7}\) \(\Rightarrow H\left(\frac{1}{7};-\frac{4}{7};-\frac{5}{7}\right)\)
14.
\(\overrightarrow{BA}=\left(4;2;0\right)=2\left(2;1;0\right)\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1;-1\right)\)
Mp trung trực AB vuông góc AB và qua M có pt:
\(2\left(x+1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y+1=0\)
15.
Gọi pt \(\left(Q\right)\) có dạng \(ax+by+cz+d=0\) (\(d\ne0\))
(Q) qua A nên: \(2a+d=0\) \(\Rightarrow d=-2a\)
\(\left(P\right)\perp\left(Q\right)\Leftrightarrow2b-c=0\) \(\Rightarrow c=2b\)
\(d\left(O;\left(Q\right)\right)=\frac{4}{3}\Leftrightarrow\frac{\left|d\right|}{\sqrt{a^2+b^2+c^2}}=\frac{4}{3}\Leftrightarrow9d^2=16\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow36a^2=16\left(a^2+b^2+4b^2\right)\) \(\Leftrightarrow20a^2=80b^2\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=-2b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=2;b=1;c=2;d=-4\\a=2;b=-1;c=-2;d=-4\end{matrix}\right.\) Có 2 mặt phẳng (Q) thỏa mãn: \(\left[{}\begin{matrix}2x+y+2z-4=0\\2x-y-2z-4=0\end{matrix}\right.\)
Xét \(M\left(0;m\right)\in Oy\). Đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=kx+m\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}x^4-2x^2-1=kx+m\\4x^3-4x=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(-x^4-2x^2-1=4x^4-4x^2+m\)
\(\Leftrightarrow5x^4-2x^2+1+m=0\) (*)
Để từ M ta có thể kẻ đến đồ thị đúng 3 tiếp tuyến \(\Leftrightarrow\) (*) có 3 nghiệm phân biệt \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
Khi đó (*) có 3 nghiệm \(x=0;x=\pm\sqrt{\frac{2}{5}}\) và 3 tiếp tuyến đó là :
\(y=-1;y=\pm\sqrt{\frac{2}{5}}x-1\)
Vậy \(M\left(0;-1\right)\) là điểm cần tìm
14.
Pt mp (P) qua A và vuông góc d:
\(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)
\(\Leftrightarrow x-2y+2z+6=0\)
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)
Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:
\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\) \(\Rightarrow M\left(2;5;1\right)\)
A' đối xứng A qua d \(\Rightarrow\)M là trung điểm AA'
Theo công thức trung điểm \(\Rightarrow A'\left(2;7;3\right)\)
15.
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
PT (P) qua A và vuông góc d:
\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x+2y-z-4=0\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)
\(\Rightarrow H\left(1;0;-1\right)\)
11.
Thay tọa độ 4 điểm vào pt d chỉ có đáp án A thỏa mãn
12.
Phương trình (P) qua A và vuông góc \(\Delta\):
\(1\left(x-0\right)+1\left(y-1\right)-1\left(z+1\right)=0\Leftrightarrow x+y-z-2=0\)
Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:
\(1+t+2+t-\left(13-t\right)-2=0\Rightarrow t=4\) \(\Rightarrow M\left(5;6;9\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(5;5;10\right)=5\left(1;1;2\right)\)
Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=-1+2t\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=5+t\\y=6+t\\z=9+2t\end{matrix}\right.\)
13.
Pt tham số đường d qua A vuông góc (P): \(\left\{{}\begin{matrix}x=-t\\y=1-2t\\z=-2+2t\end{matrix}\right.\)
H là giao điểm (P) và d nên tọa độ thỏa mãn:
\(t-2\left(1-2t\right)+2\left(-2+2t\right)-3=0\Rightarrow t=1\)
\(\Rightarrow H\left(-1;-1;0\right)\)
Sao toán lớp 12 lại hỏi câu này :)))
Câu này đúng