Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(=\frac{243}{729}+\frac{81}{729}+\frac{27}{729}+\frac{3}{729}\)
\(=\frac{243+81+27+3}{729}=\frac{354}{729}\)
\(\frac{1}{3}\)+ \(\frac{1}{9}\)+ \(\frac{1}{27}\)+ \(\frac{1}{81}\)+ \(\frac{1}{243}\)+ \(\frac{1}{729}\)
= \(\frac{243}{729}\)+ \(\frac{81}{729}\)+ \(\frac{27}{729}\)+ \(\frac{9}{729}\)+ \(\frac{3}{729}\)+ \(\frac{1}{729}\)
= \(\frac{\left(243+27\right)+\left(81+9\right)+\left(3+1\right)}{729}\)
= \(\frac{270+90+4}{729}\)
=\(\frac{364}{729}\)
:)
lấy MS chung là 2187, ta có:
729 + 243 + 81 + 9 + 3 + 1
________________________ = 1066/2187
2187
đặt S=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=>3S= \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
=>3S-S=\(\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
=>s=1-1/729 = 728/729
1/3+1/9+1/27+1/81+1/243+1/729=(1/3+1/9+1/81)+(1/27+1/243+1/729)=37/81+37/729=333/729+37/729=370/729
Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
= 1 - 1/729
A x 2 = 728/729
A = 364/729
1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
=1+ 243/729+ 81/729 + 27/729 + 9/729 + 3/729
=1093/729
Lời giải:
$A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}$
$3\times A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}$
$\Rightarrow 3\times A-A=1-\frac{1}{729}$
$\Rightarrow 2\times A=\frac{728}{729}$
$\Rightarrow A=\frac{364}{729}$