Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+...+\left(x+\dfrac{1}{420}\right)=20\)
\(\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{420}\right)=20\) (20 số x)
\(20x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)=20\)
\(20x+\left(1-\dfrac{1}{21}\right)=20\)
\(20x+\dfrac{20}{21}=20\)
\(20x=20-\dfrac{20}{21}\)
\(20x=\dfrac{400}{21}\)
\(x=\dfrac{400}{21}:20\)
\(x=\dfrac{400}{21}.\dfrac{1}{20}\)
\(x=\dfrac{20}{21}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+......+\frac{1}{420}+\frac{1}{462}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{20.21}+\frac{1}{21.22}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}\)
\(=1-\frac{1}{22}\)
\(=\frac{22}{22}-\frac{1}{22}=\frac{21}{22}\)
\(A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{420}\\ \Rightarrow A=\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{20\times21}\\ \Rightarrow A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}\\\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
Sau khi rút gọn phải còn:
\(A=\dfrac{1}{2}-\dfrac{1}{21}\) (chứ anh)
\(A=\dfrac{19}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{20.21}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{20}+\frac{1}{20}-\frac{1}{21}\)
\(M=1-\frac{1}{21}\)
\(M=\frac{20}{21}\)
\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{420}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{20.21}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)
\(M=1-\frac{1}{21}\)
\(M=\frac{20}{21}\)