Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình trả lời cho bạn nè !
=4/3x9/8x16/15x...x10000/9999
=(4x9x16x...x10000)/(3x8x15x...x9999)
=(2x2x3x3x4x4x...x100x100)/(1x3x2x4x3x5x...x99x101)
=(2x2x3x3x4x4x...x100x100)/(1x2x3x3x4x4x5x5x...x100x100x101)
=2/101
cách làm của mình giống Công Chúa Giá Băng nha!K cho mình đi,mình có 200 nick luôn!
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}\)
\(B=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\)
\(B=\frac{3.8.15...9999}{2^2.3^2.4^2...100^2}\)
\(B=\frac{1.3.2.4.3.5...99.101}{2.2.3.3.4.4...100.100}\)
\(B=\frac{\left(1.2.3...99\right).\left(3.4.5...101\right)}{\left(2.3.4...100\right).\left(2.3.4...100\right)}\)
\(B=\frac{1.101}{100.2}\)
\(B=\frac{101}{200}\)
\(C=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right).\left(1+\frac{1}{100}\right)\)
\(C=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}.\frac{101}{100}\)
\(C=\frac{3.4.5...100.101}{2.3.4...99.100}\)
\(C=\frac{101}{2}\)
Dấu . là dâú x nha
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Mình chỉnh lại đề B nha:
\(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
A = ( 1 + \(\dfrac{1}{3}\))\(\times\)( 1+ \(\dfrac{1}{8}\))\(\times\)( 1 + \(\dfrac{1}{15}\))\(\times\)...\(\times\)(1+\(\dfrac{1}{9999}\))
A = \(\dfrac{3+1}{3}\)\(\times\)\(\dfrac{8+1}{8}\)\(\times\)\(\dfrac{15+1}{15}\)\(\times\)...\(\times\)\(\dfrac{9999+1}{9999}\)
A = \(\dfrac{4}{3}\)\(\times\)\(\dfrac{9}{8}\)\(\times\)\(\dfrac{16}{15}\)\(\times\)\(\dfrac{10000}{9999}\)
A = \(\dfrac{2\times2}{1\times3}\)\(\times\dfrac{3\times3}{2\times4}\)\(\times\)\(\dfrac{4\times4}{3\times5}\)\(\times\)...\(\times\)\(\dfrac{100\times100}{99\times101}\)
A =\(\dfrac{2\times2\times\left(3\times4\times..\times99\right)\times\left(3\times4\times..99\right)\times100\times100}{1\times2\times\left(3\times4\times..99\right)\times\left(3\times4\times..99\right)\times100\times101}\)
A = \(\dfrac{200}{101}\)