Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\frac{19}{20}\div x=\frac{9}{10}\)
\(\Leftrightarrow x=\frac{19}{18}\)
Sửa đề : \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right):x=\frac{9}{10}\)
\(\Leftrightarrow VT=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{20}\right)=\frac{9}{10}x\Leftrightarrow\frac{19}{20}=\frac{9}{10}x\)
\(\Leftrightarrow\frac{19}{20}=\frac{18x}{20}\) Khử mẫu ta đc : \(\Leftrightarrow18x=19\Leftrightarrow x=\frac{19}{18}\)
1/1-1/2+1.2-1/3+1/3-1/4+..+1/x-1/x+1=2018/2019
1-1/x+1=2018/2019
1-2018/2019=1/x+1
1/2019=1/x+1
=>x+1=2019
=>x=2018
vậy...
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2018}{2019}.\)
\(\frac{1}{1}-\frac{1}{x+1}=\frac{2018}{2019}\)
\(\frac{1}{1}-\frac{2018}{2019}=\frac{1}{x+1}\)
\(\frac{1}{2019}=\frac{1}{x+1}\)
=> \(2019=x+1\)
\(x+1=2019\)
\(x=2019-1\)
\(x=2018\)
Vậy x = 2018
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(x-1\right)\times x}=\frac{15}{16}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x-1}-\frac{1}{x}=\frac{15}{16}\)
\(1-\frac{1}{x}=\frac{15}{16}\)
\(\frac{1}{x}=\frac{1}{16}\)
\(\Rightarrow x=16\)
\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{64}{13}\)
\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{64}{13}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{13}\div5\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{64}{65}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{65}\)
\(\Rightarrow x+1=65\Rightarrow x=65-1=64\)
\(\text{Vậy }x=64\)
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Vậy \(x=\frac{13}{10}\)
~~~~~Hok tốt ~~~~~
a,\(\frac{1313}{1212}\div x=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(\frac{13}{12}\div x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\frac{13}{12}\div x=1-\frac{1}{6}\)
\(\frac{13}{12}\div x=\frac{5}{6}\)
\(x=\frac{13}{12}\div\frac{5}{6}\)
\(x=\frac{13}{12}\times\frac{6}{5}\)
\(x=\frac{13}{10}\)
Chúc bạn hok tốt !
\(\frac{1313}{1212}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\)\(\frac{1}{5.6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=1-\frac{1}{6}\)
\(\Leftrightarrow\frac{13}{12}:x=\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{12}:\frac{5}{6}\)
\(\Leftrightarrow x=\frac{13}{10}\)
Hok tốt
Áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có:
VT=\(x-\left(\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{99}-\frac{1}{100}\right)\right)\)
=\(x-\frac{1}{100}\)
Dễ dàng tìm được
\(x-\frac{1}{100}=\frac{1}{100}\)
\(x=\frac{1}{50}\)
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left(100-10\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=1.2=2\)
\(\Rightarrow\left(x+\dfrac{206}{100}\right)=\dfrac{5}{2}:2=\dfrac{5}{2}.\dfrac{1}{2}=\dfrac{5}{4}\)
\(\Rightarrow x=\dfrac{5}{4}-\dfrac{206}{100}=\dfrac{125}{100}-\dfrac{206}{100}\)
\(\Rightarrow x=-\dfrac{81}{100}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{10}{11}\)
=>\(1-\frac{1}{x+1}=\frac{10}{11}\)
=>\(\frac{1}{x+1}=1-\frac{10}{11}\)
=>\(\frac{1}{x+1}=\frac{1}{11}\)
=>x+1=11
=>x=10