Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\frac{3}{5}\right)=\frac{2}{5}×-\frac{1}{3}\)
\(\left(x-\frac{3}{5}\right)=-\frac{2}{165}\)
\(x=-\frac{2}{165}+\frac{3}{5}\)
\(x=\frac{97}{165}\)
vậy \(x=\frac{97}{165}\)
\(x×\left(\frac{3}{7}+\frac{2}{3}\right)=\frac{10}{21}\)
\(x×\frac{23}{21}=\frac{10}{21}\)
\(x=\frac{10}{21}:\frac{23}{21}\)
\(x=\frac{10}{23}\)
vậy \(x=\frac{10}{23}\)
\(\left(x-\frac{3}{5}\right):\frac{-1}{3}=\frac{2}{5}\)
=> \(x-\frac{3}{5}=\frac{2}{5}\cdot\left(-\frac{1}{3}\right)=-\frac{2}{15}\)
=> \(x=-\frac{2}{15}+\frac{3}{5}=-\frac{2}{15}+\frac{9}{15}=\frac{7}{15}\)
\(\frac{3}{7}x-\frac{2}{3}x=\frac{10}{21}\)
=> \(\left(\frac{3}{7}-\frac{2}{3}\right)x=\frac{10}{21}\)
=> \(-\frac{5}{21}x=\frac{10}{21}\)
=> \(x=\frac{10}{21}:\frac{-5}{21}=\frac{10}{21}\cdot\frac{-21}{5}=-2\)
Hai bài của ☆luffy cute☆ đều sai hết , xem xét lại đi nhé
a) \(\dfrac{1}{4}-3\left(\dfrac{1}{12}+\dfrac{3}{8}\right)=\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{9}{8}=-\dfrac{9}{8}\)
b) \(\left(-\dfrac{2}{3}+\dfrac{3}{5}\right):\dfrac{1}{50}-30=\left(-\dfrac{2}{3}+\dfrac{3}{5}\right).50-30=-\dfrac{100}{3}+30-30=-\dfrac{100}{3}\)
Kẻ CF//AB thì CF//DE
Do đó \(\widehat{BCF}=\widehat{ABC}=40^0;\widehat{FCE}=\widehat{CED}=30^0\) (so le trong)
Vậy \(\widehat{BCE}=\widehat{BCF}+\widehat{FCE}=30^0+40^0=70^0\)
A) \(...=\left(7y-3\right)^3\)
B) \(...=\left(4y-3\right)^3\)
C) \(...=x^4+2x^2+1-\left(y^2+2y+1\right)\)
\(=\left(x^2+1\right)^2-\left(y+1\right)^2\)
D) \(...=x^2-6x+9-\left(y^2-10y+25\right)\)
\(=\left(x-3\right)^2-\left(y-5\right)^2\)
\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)
\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)
\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)
Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)
=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)
\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)
<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)
<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)
<=> \(2^x=2^{49}\)
<=> x = 49.
- \(\dfrac{1}{12}\) - ( 2 \(\dfrac{5}{8}\) - \(\dfrac{1}{3}\))
= - \(\dfrac{1}{12}\) - ( \(\dfrac{21}{8}\) - \(\dfrac{1}{3}\))
= - \(\dfrac{1}{12}\) - ( \(\dfrac{63}{24}\) - \(\dfrac{8}{24}\))
= - \(\dfrac{1}{12}\) - \(\dfrac{55}{24}\)
= - \(\dfrac{2}{24}\) - \(\dfrac{55}{24}\)
= - \(\dfrac{57}{24}\)
= - \(\dfrac{19}{8}\)
`(-1)/12 - (2 5/8 - 1/3)`
`=(-1)/12 - ( 21/8 - 1/2)`
`=(-1)/12 - (63/24 - 8/12)`
`=(-1)/12 -55/24`
`=(-2)/24 - 55/24`
`=(-2-55)/24`
`=(-57)/24`
`=(-19)/8`