K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

 Sử dụng tính chất:

Với số tự nhiên n≠0 ta có 

14 tháng 9 2021

 11.2+12.3+13.4+...+12018.2019

=1−12+12−13+13−14+....+12018−12019

18 tháng 3 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)

Vậy A=49/50

Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

18 tháng 9 2018

=>-(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5)

=>-(1-1/5)

=>-4/5

18 tháng 9 2018

\(\:\frac{-1}{1.2}+\frac{-1}{2.3}+\frac{-1}{3.4}+\frac{-1}{4.5}\)

\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)

=\(-1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)

=\(-1\left(1-\frac{1}{5}\right)\)

=\(-1\times\frac{4}{5}\)

=\(\frac{-4}{5}\)

22 tháng 2 2016

Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + n.( n + 1 ).3

=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + n.( n + 1 ).[ ( n + 2 ) - ( n - 1 ) ]

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + n.( n + 1 ).( n + 2 ) - ( n - 1 ).n.( n + 1 )

=> 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + [ ( n - 1 ).n.( n + 1 ) - ( n - 1 ).n.( n + 1 ) ] + n.( n + 1 ).( n + 2 )

=> 3A = n.( n + 1 ).( n + 2 )

=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

1 tháng 10 2016

Ta có 

\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)

\(=2-\frac{1}{10}\)

\(=\frac{19}{10}\)

Vậy \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)\(=\frac{19}{10}\)

15 tháng 8 2016

A= 1-2+3-4+4-5+...+99-100

A = ( 1 - 2 ) + ( 2 - 3 ) + ....+ ( 99 - 100 )

A = ( - 1 ) + ( - 1 ) +....+ ( - 1 )

A = ( - 1 ) . 50

A = - 50

B = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100 
Nhân cả 2 vế với 3, ta được: 
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3 
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98) 
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100 
= 99.100.101 
=) B = (99.100.101) :3 
B = 333300  
Vậy  B= 333300 

 

15 tháng 8 2016

A= 1-2+3-4+4-5+...+99-100

A = (1-2) + (3-4) + (4-5) + ... + (99-100)

A = (-1) + (-1) + (-1) + ...+ (-1)

A = (-1).50

A = 1

15 tháng 7 2018

\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)

\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)

\(=-\frac{9}{10}+\frac{1}{90}\)

= ...

bn tự tính nha!
 

24 tháng 8 2017

Bạn có ghi thiếu đề không vậy?

5 tháng 9 2017

ko

29 tháng 8 2018

\(-\frac{1}{1.2}+-\frac{1}{2.3}+-\frac{1}{3.4}+-\frac{1}{4.5}\)

\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)

\(=-1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)

\(=-1\left(1-\frac{1}{5}\right)\)

\(=-1.\frac{4}{5}=-\frac{4}{5}\)

29 tháng 8 2018

\(\frac{-1}{1.2}+\frac{-1}{2.3}+\frac{-1}{3.4}+\frac{-1}{4.5}\)

\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)

\(=-1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)

\(=-1\left(1-\frac{1}{5}\right)\)

\(=-1.\frac{4}{5}=-\frac{4}{5}\)