Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số cần tìm là a ; b ; c
Theo đề ra ta có :
\(\begin{cases}\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\\x+y+z=611\end{cases}\)
\(\Rightarrow\begin{cases}3x=4y=5z\\x+y+z=611\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\\x+y+z=611\end{cases}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=13\)
\(\Rightarrow\begin{cases}x=260\\y=195\\z=156\end{cases}\)
a) Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-1971}{29}-\dfrac{x^2-10x-1973}{27}=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
mà \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)
nên \(x^2-10x-2000=0\)
\(\Leftrightarrow x^2+40x-50x-2000=0\)
\(\Leftrightarrow x\left(x+40\right)-50\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)
Vậy: S={-40;50}
x=9 ⇒ 10= x+1 thay vào C ta đc
C = x14- (x+1).x13 +........ - (x+1).x +x+1
⇒C = x14-x14-x13+........ -x2 -x +x+1
⇒C =1
mk làm tóm tắt ít số hơn nếu bạn muốn dễ hiểu thì thay nhiều cái vào
a: \(=\left(4x-1\right)^3\)
b: \(=1000x^3-1-10x\left(100x^2-1\right)\)
\(=-1+10x\)
Có x= 9 nên 10x^13=(9+1)x^13=(x+1)x^13=x^14+x^13
Tương tự thay vào C=x^14 - x^14 + x^13 - ....-x^2 - x +10=-x + 10=1
x=9
=>x+1=10
\(A=x^{10}-10x^9+10x^8-...+10x^2-10x+1\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+1\)
\(=x^{10}-x^{10}-x^9+x^8+...+x^3+x^2-x^2-x+1\)
=-x+1
=-9+1=-8