K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)

Tập này có 3 phần tử nguyên

4 tháng 3 2021

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

23 tháng 12 2018

Pmax=-10 tại m=0

8 tháng 5 2020

như shirt

 

23 tháng 11 2021

\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)

\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)

\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)

16 tháng 2 2021

Đáp án: D

A: \(f(x)=x^2+2x-x^2=2x\) → Bậc 1.

B: \(f(x)=x+3\) → Bậc 1.

C: Bậc 4.

16 tháng 7 2023

ai lm cho mik đi ạ 

17 tháng 7 2023

Để lập Bảng Bảng Tiến trình (BBT) và vẽ đồ thị cho từng hàm số, ta tiến hành theo các bước sau:

a. y = x^2 - 4x + 3

Đầu tiên, ta lập BBT bằng cách tạo một bảng với các cột cho giá trị của x, giá trị của hàm số y tương ứng và sau đó tính giá trị của y bằng cách thay các giá trị của x vào công thức của hàm số.

x | y

-2 | 15 -1 | 8 0 | 3 1 | 0 2 | -1 3 | 0 4 | 3 5 | 8

Sau khi lập BBT, ta có thể vẽ đồ thị bằng cách vẽ các điểm (x, y) tương ứng trên hệ trục tọa độ.

b. y = -x^2 + 2x - 3

Lập BBT:

x | y

-2 | -11 -1 | -6 0 | -3 1 | -2 2 | -3 3 | -6 4 | -11

Vẽ đồ thị.

c. y = x^2 + 2x

Lập BBT:

x | y

-2 | 0 -1 | 0 0 | 0 1 | 3 2 | 8 3 | 15 4 | 24

Vẽ đồ thị.

d. y = -2x^2 - 2

Lập BBT:

x | y

-2 | -6 -1 | -4 0 | -2 1 | -4 2 | -10 3 | -18 4 | -28

Vẽ đồ thị.

Sau khi lập BBT và vẽ đồ thị cho từng hàm số, bạn có thể dễ dàng quan sát và phân tích các đặc điểm của đồ thị như điểm cực trị, đồ thị hướng lên hay hướng xuống, đồ thị cắt trục hoành và trục tung ở những điểm nào, và các đặc tính khác của hàm số.

2 trên 20            

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

NV
29 tháng 3 2022

\(\Delta'=\left(m+5\right)^2-10m-24=m^2+1>0;\forall m\)

\(\Rightarrow f\left(x\right)=0\) luôn có 2 nghiệm pb với mọi m và: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+5\right)\\x_1x_2=10m+24\end{matrix}\right.\)

Để \(f\left(x\right)>0;\forall x>2\)

\(\Leftrightarrow x_1< x_2< 2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10m+24-4\left(m+5\right)+4>0\\2\left(m+5\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{3}\\m< -3\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

29 tháng 3 2022

dạ c.ơn thầy ạ