K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

Ta có: \(n^2+6n=n\left(n+6\right)\)

Vì SNT chỉ có 2 ước dương duy nhất là 1 và chính nó nên ta xét các TH sau:

+ Nếu: \(n=1\Rightarrow n+6=7\)

=> \(n^2+6n=7\left(tm\right)\)

+ Nếu: \(n+6=1\Rightarrow n=-5\) (không thỏa mãn vì âm)

Còn nếu xét các TH  khác ta luôn có thể thấy \(n\left(n+6\right)\) là tích 2 STN cách nhau 6 đơn vị

=> không thể là SNT

Vậy n = 1

18 tháng 10 2015

n2+6n = n(6+n) = p ( p là số nguyên tố ) suy ra n =1 hoặc n + 6 =1 

Xét TH n=1 => p=7 thỏa mãn 

Xét Th n+6=1, n=-5 thay vào 25-30=-5 loại vậy n=1 thì biểu thức là số nguyên tố

18 tháng 9 2015

n2 + 6n = n.(n+6) 

n2 + 6n là số nguyên tố nên chỉ có 2 ước là 1 và chính nó => n = 1 hoặc n + 6 = 1

n + 6 = 1 mà n là số tự nhiên nên không có n thỏa mãn

Vậy n = 1 

18 tháng 9 2015

n=1

n2+6n khác 1,0  suy ra n.n+6n chia hết cho n

vậy n = 1

n khác 0 vì nếu n.n +6n= 0.0+6.0=0 ko là số nguyên tố

5 tháng 9 2023

a) Vì \(\left\{{}\begin{matrix}6n⋮3\\6n+2=2\left(3n+1\right)⋮2\\6n-2=2\left(3n-1\right)⋮2\\6n\pm3=3\left(n\pm1\right)⋮3\end{matrix}\right.\)

\(\Rightarrow\left(6n;6n\pm2;6n\pm3\right)\) là các hợp số

Nên \(n>3\) thì các số nguyên tố có thể là \(6n+1\) hoặc \(6n-1\)

b) \(6n+1\) hoặc \(6n-1\left(n\inℕ^∗\right)\) không đêu là số nguyên vì \(6.4+1=25\left(n=4\right)\) là hợp số.

2 tháng 11 2015

n2 + 6n = n(n + 6) chia hết n

Mà n2 + 6n phải là số nguyên tố => n = 1

Thử lại: n(n + 6) = 7 nguyên tố

Vậy n = 1

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

7 tháng 8 2016

Giải:

n2+6n là 1 số nguyên tố (đề bài cho)

Nhưng khi đã có 1 thừa số của 1 tích nhỏ( tổng) là 6(khác số nguyên tố)=> không có giá trị cần tìm

=> Không có giá trị n thỏa mãn