K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác 

26 tháng 12 2021

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 1:

$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$ 

$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$

$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 2:
$8x^3-32y-32x^2y+8x=0$

$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$

$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$

$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)

$\Leftrightarrow x=4y$

Khi đó:

$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$

15 tháng 12 2021

\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

 

15 tháng 12 2021

\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)

Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

 

9 tháng 3 2018

Phần dư của phép chia đa thức x 4   +   a x 2 + 1 chia hết cho  x 2 + 2x + 1 là

R = (-4 – 2a)x – a – 2

Để phép chia trên là phép chia hết thì R = 0 ó (-4 – 2a)x – a – 2 = 0 với mọi x

ó - 2 a - 4 = 0 - a - 2 = 0 ó a = -2

Đáp án cần chọn là: A

NV
29 tháng 1 2021

\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)

\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)

Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT

\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)

- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)

Vậy \(x=1\)

20 tháng 8 2023

a) \(N=x^2-10x+25\)

\(N=x^2-2\cdot5\cdot x+5^2\)

\(N=\left(x-5\right)^2\)

Thay x = 55 vào N ta có: 

\(N=\left(55-5\right)^2=2500\)

b) \(P=\dfrac{x^4}{4}-x^2y+y^2\)

\(P=\left(\dfrac{x^2}{2}\right)^2-2\cdot\dfrac{x^2}{2}\cdot y+y^2\)

\(P=\left(\dfrac{x^2}{2}-y\right)^2\)

Thay x = 4 và \(y=\dfrac{1}{2}\) vào P ta có:

\(P=\left(\dfrac{4^2}{2}-\dfrac{1}{2}\right)^2=\dfrac{225}{4}\)

20 tháng 8 2023

Phần b mình thấy kết quả nó sai b ạ thầy cho mình đáp án là 225/9 

6 tháng 5 2017

a) x -5.

b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5  

c) Ta có P = 1 Û x = -4 (TMĐK)

d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .

a: \(N=\dfrac{x^2-5x+5x+25+10x}{\left(x-5\right)\left(x+5\right)}\cdot\dfrac{x-5}{x}\)

\(=\dfrac{\left(x+5\right)^2}{x+5}\cdot\dfrac{1}{x}=\dfrac{x+5}{x}\)

b: N=3/2

=>x+5/x=3/2

=>2x+10=3x

=>-x=-10

=>x=10

c: N nguyên thì x+5 chia hêt cho x

=>5 chia hết cho x

=>\(x\in\left\{1;-1\right\}\)