Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(2=1+1=1+\sqrt{1}\)
Mà: \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\)
\(\Rightarrow1+\sqrt{1}< \sqrt{2}+1\)
\(\Rightarrow2< \sqrt{2}+1\)
b) Ta có:
\(1=2-1=\sqrt{4}-1\)
Mà: \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\sqrt{4}-1>\sqrt{3}-1\)
\(\Rightarrow1>\sqrt{3}-1\)
c) Ta có:
\(10=2\cdot5=2\sqrt{25}\)
Mà: \(25< 31\Rightarrow\sqrt{25}< \sqrt{31}\)
\(\Rightarrow2\sqrt{25}< 2\sqrt{31}\)
\(\Rightarrow10< 2\sqrt{31}\)
d) Ta có:
\(-12=-3\cdot4=-3\sqrt{16}\)
Mà: \(16>11\Rightarrow\sqrt{16}>\sqrt{11}\)
\(\Rightarrow-3\sqrt{16}< -3\sqrt{11}\)
\(\Rightarrow-12< -3\sqrt{11}\)
a: căn 14<4
=>7+căn 14<4+7=11
b: -căn 5<-2
=>-căn 5+9<-2+9=7
d: \(\sqrt{145}< 13\)
=>-11+căn 145<-11+13=2
e: \(7-4\sqrt{5}+2=9-4\sqrt{5}>0\)
=>7-4căn 5>-2
f: -4căn 5>-9
=>-9-4căn 5>-9-9=-18
a, HS tự chứng minh
b, ∆IAC:∆IDB (g.g)
c, Sử dụng kết quả câu b)
a) So sánh \(\widehat{ACI}\) và \(\widehat{ABD}\) và cặp góc \(\widehat{CAI}\) và \(\widehat{CDB}\)
Ta có \(\widehat{ACI}+\widehat{ACD}=180^o\) (hai góc kề bù) \(\left(1\right)\)
Xét \(\left(O\right)\) có:
\(\widehat{ABD}\) là góc nối tiếp chắn cung \(AD\)
\(\widehat{ACD}\) là góc nối tiếp chắn cung \(AD\)
\(\Rightarrow\widehat{ABD}+\widehat{ACD}=\dfrac{1}{2}.360^o=180^o\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ⇔ \(\widehat{ACI}=\widehat{ABD}=180^o-\widehat{ACD}\)
Ta có: \(\widehat{CAI}+\widehat{BAC}=180^o\) (hai góc kề bù)
Xét \(\left(O\right)\) có:
\(\widehat{BAC}\) là góc nội tiếp của chắn cung \(BC\)
\(\widehat{CDB}\) là góc nội tiếp của chắn cung \(BC\)
\(\Rightarrow\widehat{BAC}+\widehat{CDB}=\dfrac{1}{2}.360^o=180^o\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\widehat{CAI}=\widehat{CDB}=180^o-\widehat{BAC}\)
b) Chứng minh tam giác IAC đồng dạng với tam giác IDB
Xét \(\Delta IAC\) và \(\Delta IDB\) có:
\(\widehat{A}\) là góc chung
\(\widehat{IAC}=\widehat{IDB}\) (câu a)
\(\Rightarrow\Delta IAC\sim\Delta IDB\)
c) Chứng minh \(IA.IB=IC.ID\)
Theo câu b ta có \(\Delta IAC\sim\Delta IDB\)
Suy ra: \(\dfrac{IA}{ID}=\dfrac{IC}{IB}\)
Hay: \(IA.IB=IC.ID\) (đpcm)
a: ACDB là tứ giác nội tiếp
=>góc ABD+góc ACD=180 độ;góc BAC+góc BDC=180 độ
=>góc ACI=góc ABD;góc CAI=góc CDB
b: Xét ΔIAC và ΔIDB có
góc IAC=góc IDB
góc AIC chung
=>ΔIAC đồng dạg với ΔIDB
c: ΔIAC đồng dạng vơi ΔIDB
=>IA/ID=IC/IB
=>IA*IB=IC*ID
a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1=B-1\)
\(\Rightarrow A< B\)
a, A=\(\left(2000-1\right).\left(2000+1\right)=2000^2-1< 2000^2\)
suy ra A<B
b, C=\(3^{n+1}+2^2.2^{n-1}-3^4.3^{n-3}-2^3.2^{n-2}+1\)
\(=3^{n+1}+2^{n+1}-3^{n+1}-2^{n+1}+1\)
C=1.
\(D=4^n+2.2^n+1+4^n-2.2^n+1-2.4^n-2\)
D=0
Vậy C>D
thì b cứ lấy số so sanh thui!
r dùng ngược lại log là ra ?>!
^-^