Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi một cạnh hình vuông là \(x ( m) (x ≥ 0)\)
diện tích hình vuông ban đầu là = x²
diện tích hình vuông sau khi mở rộng là \((x+2)(x+2) =x² +4x +4 \)
diện tích tăng thêm là \((x+2)(x+2) =x² +4x +4 \)
\(⇒ 64 -4 = 4x ⇒60 =4x ⇒x =15 \)
chu vi là \(15 ×4 = 60 \)
diện tích là 1\(5² =225 \)
Gọi cạnh hình vuông đó là \(a\)(đơn vị mét) ta có:
\(\left(a+2\right)\left(a+2\right)-a\cdot a=64\)
\(\Rightarrow a^2+2a2+2^2-a^2=64\)
\(\Rightarrow\left(a^2-a^2\right)+2a2+2^2=64\)
\(\Rightarrow2a2+4=64\)
\(\Rightarrow2a2=60\)
\(\Rightarrow4a=60\)
\(\Rightarrow a=60:4=15\)
Chu vi cái sân là:
\(4a=4\cdot15=60\left(m\right)\)
Diện tích cái sân là:
\(a^2=15^2=225\left(m^2\right)\)
Đáp số: Chu vi:\(60m\) ;Diện tích: \(225m^2\)
([ gọi một cạnh hình vuông là x(m)(x≥0)x(m)(x≥0)
diện tích hình vuông ban đầu là = x²
diện tích hình vuông sau khi mở rộng là (x+2)(x+2)=x²+4x+4(x+2)(x+2)=x²+4x+4
diện tích tăng thêm là (x+2)(x+2)=x²+4x+4(x+2)(x+2)=x²+4x+4
⇒64−4=4x⇒60=4x⇒x=15⇒64−4=4x⇒60=4x⇒x=15
chu vi là 15×4=6015×4=60
diện tích là 15²=225])
Gọi \(x\left(m\right)\) là chiều rộng của sân lúc đầu \(\left(x>0\right)\)
Chiều dài của sân lúc đầu là: \(\dfrac{3}{2}x\left(m\right)\)
Diện tích sân lúc đầu là: \(x.\dfrac{3}{2}x=\dfrac{3}{2}x^2\left(m ^2\right)\)
Chiều dài sân lúc sau là: \(\dfrac{3}{2}x+2\left(m\right)\)
Chiều rộng sân lúc sau là: \(x+2\left(m\right)\)
Diện tích sân lúc sau là: \(\left(\dfrac{3}{2}x+2\right)\left(x+2\right)\left(m^2\right)\)
Vì diện tích sân lúc sau tăng thêm 64m2 nên ta có phương trình:
\(\left(\dfrac{3}{2}x+2\right)\left(x+2\right)-\dfrac{3}{2}x^2=64\\ \Leftrightarrow\dfrac{3}{2}x^2+3x+2x+4-\dfrac{3}{2}x^2=64\\ \Leftrightarrow5x=60\\ \Leftrightarrow x=12\left(tm\right)\)
Vậy diện tích dân lúc đầu là: \(\dfrac{3}{2}.12^2=216m^2\)
Gọi chiều dài ban đầu của sân là x(m)(Điều kiện: x>0)
Chiều rộng ban đầu của sân là:
\(\dfrac{2}{3}x\)(m)
Diện tích ban đầu của sân là:
\(\dfrac{2}{3}x\cdot x=\dfrac{2}{3}x^2\left(m^2\right)\)
Vì khi mở rộng sân thêm chiều dài 2m và thêm chiều rộng 2m thì diện tích sân tăng thêm 64m2 nên ta có phương trình:
\(\left(x+2\right)\left(\dfrac{2}{3}x+2\right)=\dfrac{2}{3}x^2+64\)
\(\Leftrightarrow\dfrac{2}{3}x^2+2x+\dfrac{4}{3}x+4-\dfrac{2}{3}x^2=64\)
\(\Leftrightarrow\dfrac{10}{3}x=60\)
hay x=18(thỏa ĐK)
Chiều rộng của sân là:
\(\dfrac{2}{3}\cdot18=12\left(m\right)\)
Diện tích ban đầu của sân là:
\(12\cdot18=216\left(m^2\right)\)
Bài 2:
Chiều rộng ban đầu của hình chữ nhật là: 6 : 3 = 2 (cm)
Chiều dài ban đầu của hình chữ nhật đó là: 18 : 2 = 9 (cm)
Chu vi của hình chữ nhật ban đầu là: (9 + 2 ) x 2 = 22 (cm)
bài 3
Chia diện tích tăng thêm thành hình vuông có cạnh và hình chữ nhật có chiều rộng chiều dài lần lượt bằng chiều dài hình chữ nhật và chiều rộng hình chữ nhật
Diện tích hình vuông là:
Diện tích hình chữ nhật là:
Tổng của chiều dai và chiều rộng hình chữ nhật ban đầu là:
Chu vi hình chữ nhật ban đầu là:
Đáp số:
- Gọi độ dài cạnh hình vuông là a (a > 0).
- Khi mở rộng, mỗi cạnh hình vuông tăng lên 4m tức là a + 4.
- Diện tích ban đầu là a2, sau khi mở rộng là \(\left(a+4\right)^2\)
Ta có \(\left(a+4\right)^2=a^2+192\)
\(\Rightarrow a^2+8a+16=a^2+192\)
\(\Rightarrow a^2+8a-a^2=192-16\)
\(\Rightarrow8a=176\Rightarrow a=22\)
Vậy : Diện tích sân ban đầu là \(a^2=22^2=484\left(m^2\right)\)