Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc dự định là \(x\left(km/h\right)x>6\)
Thực tế \(\left(x-6\right),\left(x+12\right)\)
Thời gian dự định \(t=\frac{80}{x}\)
Thời gian thực tế \(\frac{40}{\left(x-6\right)}+\frac{40}{\left(x+12\right)}\)
Ta có pt: \(\frac{80}{x}=\frac{40}{\left(x-6\right)}+\frac{40}{\left(x+12\right)}\)
\(\Leftrightarrow x=24\)
Vận tốc dự định là \(24km/h\)
Lời giải:
Giả sử vận tốc dự định là $a$ km/h. ĐK: $a>6$
Thời gian dự định: $\frac{60}{a}$.
Thời gian ô tô đi nửa quãng đường đầu: $\frac{30}{a-6}$ (h)
Thời gian ô tô đi nửa quãng đường sau: $\frac{30}{a+10}$ (h)
Vì ô tô vẫn đảm bảo thời gian dự định nên:
$\frac{30}{a-6}+\frac{30}{a+10}=\frac{60}{a}$
Với điều kiện $a>6$ ta dễ dàng giải ra $a=30$ (km/h)
Thời gian dự định là: $\frac{60}{a}=\frac{60}{30}=2$ (h)
Gọi thời gian ô tô đi trên AB là x (x>0, h), thời gian ô tô đi trên BC là y (y>0, h)
Quãng đường AB dài: \(50x\left(km\right)\)
Quãng đường BC dài: \(45y\left(km\right)\)
\(\Rightarrow50x+45y=165\left(1\right)\)
Mà thời gian đi trên AB ít hơn đi trên BC là 30 phút ta có:
\(y-x=\dfrac{1}{2}\left(2\right)\)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}50x+45y=165\\y-x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}50x+45y=165\\2y-2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}50x+45y=165\\-50x+50y=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-x=\dfrac{1}{2}\\95y=190\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{1}{2}\\y=2\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\left(tm\right)\\y=2\left(tm\right)\end{matrix}\right.\)
Vậy thời gian đi trên AB là 1,5 giờ và đi trên BC là 2 giờ
Ai giúp nik với mik k cho cảm ơn nhiều
Ai giúp với tớ k cho cảm ơn ae