Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương
lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0
Ta có:\(A=\overline{abc}+\overline{cab}+\overline{bca}=a.100+b.10+c+c.100+a.10+b+b.100+c.10+a\)
\(=a.111+b.111+c.111=\left(a+b+c\right)111\)
Để A là số chính phương thì khi phân tích A ra số nguyên tố các thừa số đều mũ chẵn
Mà \(A=\left(a+b+c\right)111=\left(a+b+c\right).3.37\)
=>Để A là số chính phương thì a+b+c=3.37<=>a+b+c=111,mà \(a+b+c\le9\left(a;b;c\inℕ\right)\)
Vậy không có a;b;c thỏa mãn hay A không là số chính phương
A = \(\overline{abc}\)+\(\overline{bca}\)+\(\overline{cab}\)
A = 100a+10b+c+100b+10c+a+100c+10a+b
A = 111a+111b+111c
A = 111(a+b+c)
A = 37.3(a+b+c)
Giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c)\(⋮\)37
=> a+b+c\(⋮\)37
Điều này không xảy ra vì 1\(\le\)a+b+c\(\le\)27
=> A = \(\overline{abc}\)+\(\overline{bca}\)+\(\overline{cab}\) không phải là số chính phương.
a,Ta có: \(\overline{abcabc}\) = \(\overline{abc}\).1001
Để \(\overline{abcabc}\) là số chính phương thì \(\overline{abc}\) chỉ có thể là 1001
Mà \(\overline{abc}\) là số có 3 chữ số
=> \(\overline{abc}\) không phải số chính phương
b,Ta có \(\overline{ababab}\) = \(\overline{ab}\).10101
Để \(\overline{ababab}\) là số chính phương thì \(\overline{ab}\) chỉ có thể là 10101
Mà \(\overline{ab}\) là số có hai chữ số
=> \(ababab\) không phải là số chính phương
c,\(\overline{abc}+\overline{bca}+\overline{cab}\)
= 100a+10b+c+100b+10c+a+100c+10a+b
= 111a+111b+111c
= 111.(a+b+c)
=> \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải số chính phương vì a,b,c là các chữ số tự nhiên a+b+c \(\ne\) 111
\(\overline{abc}+\overline{bca}+\overline{cab}=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=111\left(a+b+c\right)=37\times3\times\left(a+b+c\right)⋮37\)
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
\(\overline{abc}⋮27\)
\(\Rightarrow\overline{abc0}⋮27\)
\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)
\(\Rightarrow999a+a+\overline{bc0}⋮27\)
\(\Rightarrow27.37a+\overline{bca}⋮27\)
do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)
Ta có: abc chia hết cho 27 => abc0 chia hết cho 27.
=> 1000a + bc0 chia hết cho 27.
=> 999a + a + bc0 chia hết cho 27.
=> 27.37.a + bac chia hết cho 27.
Vì 27.37.a chia hết cho 27 nên bac chia hết cho 27 ( đpcm )
\(A=\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111\left(a+b+c\right)\)
Để A là 1 số chính phương thì a + b + c phải = 111. Nhưng a, b, c < 10 nên a + b + c \(\ne\) 111. \(\Rightarrow\) A không phải là 1 số chính phương \(\Rightarrow\) ĐPCM