K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

a,Ta có: \(\overline{abcabc}\) = \(\overline{abc}\).1001

Để \(\overline{abcabc}\) là số chính phương thì \(\overline{abc}\) chỉ có thể là 1001

\(\overline{abc}\) là số có 3 chữ số

=> \(\overline{abc}\) không phải số chính phương

b,Ta có \(\overline{ababab}\) = \(\overline{ab}\).10101

Để \(\overline{ababab}\) là số chính phương thì \(\overline{ab}\) chỉ có thể là 10101

\(\overline{ab}\) là số có hai chữ số

=> \(ababab\) không phải là số chính phương

c,\(\overline{abc}+\overline{bca}+\overline{cab}\)

= 100a+10b+c+100b+10c+a+100c+10a+b

= 111a+111b+111c

= 111.(a+b+c)

=> \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải số chính phương vì a,b,c là các chữ số tự nhiên a+b+c \(\ne\) 111

Ta có:\(A=\overline{abc}+\overline{cab}+\overline{bca}=a.100+b.10+c+c.100+a.10+b+b.100+c.10+a\)

             \(=a.111+b.111+c.111=\left(a+b+c\right)111\)

Để A là số chính phương thì khi phân tích A ra số nguyên tố các thừa số đều mũ chẵn

Mà \(A=\left(a+b+c\right)111=\left(a+b+c\right).3.37\)

=>Để A là số chính phương thì a+b+c=3.37<=>a+b+c=111,mà \(a+b+c\le9\left(a;b;c\inℕ\right)\)

Vậy không có a;b;c thỏa mãn hay A không là số chính phương

24 tháng 1 2019

S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương

24 tháng 1 2019

lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0

29 tháng 3 2017

A = \(\overline{abc}\)+\(\overline{bca}\)+\(\overline{cab}\)

A = 100a+10b+c+100b+10c+a+100c+10a+b

A = 111a+111b+111c

A = 111(a+b+c)

A = 37.3(a+b+c)

Giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

3(a+b+c)\(⋮\)37

=> a+b+c\(⋮\)37

Điều này không xảy ra vì 1\(\le\)a+b+c\(\le\)27

=> A = \(\overline{abc}\)+\(\overline{bca}\)+\(\overline{cab}\) không phải là số chính phương.

29 tháng 3 2017

biết rồi

12 tháng 10 2017

\(A=\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111\left(a+b+c\right)\)

 

Để A là 1 số chính phương thì a + b + c phải = 111. Nhưng a, b, c < 10 nên a + b + c \(\ne\) 111. \(\Rightarrow\) A không phải là 1 số chính phương \(\Rightarrow\)  ĐPCM

 

 

24 tháng 1 2022

Tham khảo:D

ababab = ab0000 + ab00 + ab

= ab . 10000 + ab . 100 + ab . 1

= ab . (10000 + 100 + 1)

= ab . 10101

Ta có: 10101 chia hết cho 3 nên ab . 10101 chia hết cho 3 

Suy ra: ababab là bội của 3 

Giải thích các bước giải:

 Vì theo khái niệm về số chia hết cho 3 ta thấy tổng các chữ số a + b + a + b + a + b

 mà a + b + a + b + a + b = a . 3 + b . 3 

Vậy từ đó suy ra ababab chia hết cho 3.

24 tháng 1 2022

Tham khảo vui lòng in đậm nhé!

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

31 tháng 10 2016

\(\overline{abc}+\overline{bca}+\overline{cab}=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111\left(a+b+c\right)=37\times3\times\left(a+b+c\right)⋮37\)

3 tháng 2 2023

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

3 tháng 2 2023

Các bạn giải nhanh cho mình nhé. Thanks!