Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 – 2xy + y2 – z2 + 2zt – t2
(Nhận thấy x2 – 2xy + y2 và z2 – 2zt + t2 là các hằng đẳng thức)
= (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2 (xuất hiện hằng đẳng thức (3))
= [(x – y) – (z – t)][(x – y) + (z – t)]
= (x – y – z + t)(x – y + z –t)
\(D=x^4+4xy+4y^2-z^2+2xt-t^2\)
\(=\left[x^2+2.x.2y+\left(2y\right)^2\right]-\left(z^2-2.z.t+t^2\right)\)
\(=\left(x+2y\right)^2-\left(z-t\right)^2\)
\(=\left(x+2y-z+t\right)\left(x+2y+z-t\right)\)
Với \(x=10;y=40;z=30;t=20\):
\(D=\left(10+2.40-30+20\right)\left(10+2.40+30-20\right)\)
\(=\left(10+80-10\right)\left(10+80+10\right)\)
\(=80.100=8000\)
Vậy \(D=8000\)
Ta có : \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng vào bài toán có :
\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
Áp dụng BĐT Svacxo ta có :
\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\), \(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\), \(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)
Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)
P/s : Dấu "=" không chắc lắm :))
x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1x2+y2−z22xy−y2+z2−x22yz+z2+x2−y22xz=1
Tính P = x + y + z
\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2ty+2xz-t^2}=\frac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2ty+t^2\right)}=\)
\(\frac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}=\frac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{\left(x+z-y-t\right)\left(x+z+y+t\right)}=\frac{x+y-z-t}{x+z-y-t}\)
ủa? là mình làm sai hay bạn ghi đề sai vậy?
Ta có vế trái : \(\dfrac{x^2+y^2+2xy-\left(z^2+2zt+t^2\right)}{x+y-z-t}\)
\(=\dfrac{\left(x+y\right)^2-\left(z+t\right)^2}{x+y-z-t}\)
\(=\dfrac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{x+y-z-t}=x+y+z+t\) (1)
Vế phải : \(\dfrac{x^2+z^2+2zt-\left(y^2+2yt+t^2\right)}{x-y+z-t}\)
\(=\dfrac{\left(x+z-y-t\right)\left(x+y+z+t\right)}{x-y+z-t}=x+y+z+t\)(2)
Từ (1)và (2)\(\Rightarrow\left(đpcm\right)\)