Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: AB < BC (5cm < 6cm)
$\widehat{ACB}$ < $\widehat{A}$ (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà $\widehat{ACB}$ = $\widehat{ABC}$ ( $\Delta ABC$ cân tại A)
$\Rightarrow \widehat{ABC}$ < $\widehat{A}$
b. Xét $\Delta ADB$ và $\Delta ADC$ có:
$AB = AC$ ($\Delta ABC cân tại A$)
$\widehat{BAD} = \widehat{BAC}$ ($AD là phân giác \widehat{BAC}$)
$AD$: cạnh chung
$\Rightarrow \Delta ADB = \Delta ADC (c.g.c)$
Hình:
Giải:
a) Ta có: \(AC< BC\left(5< 6\right)\)
\(\Leftrightarrow\widehat{ABC}< \widehat{BAC}\) (Quan hệ giữa cạnh và góc đối diện)
b) Xét tam giác ABD và tam giác ACD, có:
AD là cạnh chung
\(\widehat{ABD}=\widehat{ACD}\) (Tam giác ABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác góc A)
\(\Rightarrow\Delta ABD=\Delta ACD\left(g.c.g\right)\)
c) Ta có tam giác ABC cân tại A có AD là phân giác
Suy ra AD đồng thời là đường trung tuyến của tam giác ABC
Mà AD cắt CE tại G
=> G là trọng tâm của tam giác ABC
=> CG là đường trung tuyến thứ ba của tam giác ABC
Măt khác CG cắt AB tại F
Nên F là trung điểm của AB
d) Không thể tính BG nếu đề bài chỉ cho dữ kiện như vậy, kết luận đề thiếu hoặc sai đề câu d, nếu đúng phải là tính AG hoặc GD.
Câu d đúng đề bạn ơi. Mk chỉ ko biết làm câu d thôi, chứ mấy câu khác mk biết òi
Do BD là tia phân giác \(\widehat{B} \)
=> \(\widehat{B} = \widehat{EBD} + \widehat{DBC}\)
=> \(\widehat{EBD} = \widehat{DBC}\) ( hai góc tương ứng )
Do CE là tia phân giác \(\widehat{C}\)
=> \(\widehat{C} = \widehat{DCE} + \widehat{ECB}\)
=> \(\widehat{DCE} = \widehat{ECB}\) ( hai góc tương ứng)
Vì \(\widehat{B} = \widehat{C} \) ( theo giả thiết)
=> \(\widehat{DBC} = \widehat{ECB}\)
Xét Δ BEC và Δ CDB có
BC là cạnh chung
\(\widehat{B} = \widehat{C}\) ( gt )
\(\widehat{DBC} = \widehat{ECB}\) ( cm trên )
=> Δ BEC = Δ CDB ( trường hợp g-c-g )
=> BD = CE hai cạnh tương ứng
mk lm đại th chắc sai r nhưng nếu đúng tick cho mk nha!!!
Tia phân giác của \(\widehat{BIC}\)cắt BC ở K.\(\Delta ABC\)có \(\widehat{A}=60^0\)
Xét \(\Delta ABC\)theo định lí tổng ba góc trong một tam giác
\(\widehat{A}+\left(\widehat{B}+\widehat{C}\right)=180^0\)
=> \(60^0+\left(\widehat{B}+\widehat{C}\right)=180^0\)
=> \(\widehat{B}+\widehat{C}=120^0\)
=> \(\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)
\(\Delta BIC\)có \(\widehat{B_1}+\widehat{C_1}=60^0\)nên \(\widehat{B_1}+\widehat{C_1}+\widehat{BIC}=180^0\)
=> 600 + \(\widehat{BIC}\)= 1800
=> \(\widehat{BIC}=120^0\)
=> \(\widehat{I_1}=60^0,\widehat{I_4}=60^0\)
IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0\)
Xét \(\Delta BIE\)và \(\Delta BIK\)có :
\(\widehat{B_1}=\widehat{B_2}\)
BI cạnh chung
\(\widehat{I_1}=\widehat{I_2}=60^0\left(cmt\right)\)
=> \(\Delta BIE=\Delta BIK\left(g.c.g\right)\)
=> IE = IK(hai cạnh tương ứng) (1)
Xét \(\Delta CID\)và \(\Delta CIK\)có :
\(\widehat{C_1}=\widehat{C_2}\)
CI cạnh chung
\(\widehat{I_3}=\widehat{I_4}=60^0\left(cmt\right)\)
=> \(\Delta CID=\Delta CIK\left(g.c.g\right)\)
=> ID = IK(hai cạnh tương ứng) (2)
Từ (1) và (2) => ID = IE
giải:
a) Xét tam giác BAD và BED, ta có:
BA = BE
góc ABD = góc EBD
BD là cạnh chung
=> tam giác BAD = tam giác BED (c - g - c)
=> DA = DE
b) Vì tam giác BAD = tam giác BED
suy ra: góc A = góc BED = 90 độ
a) xét tam giác ABD và tam giác DBE có:
BA = BE (gt)
góc ABD = góc DBE (gt)
BD chung
=> tam giác ABC = tam giác DBE (c.g.c)
=> DA = DE (cạnh tương ứng)
b) vì tam giác ABD = tam giác DBE (câu a)
=> góc A = góc BED = 900 (góc tương ứng)
vậy góc BED = 900
t i c k nha ^.^ !!! 45365647567867967978907957856846784678568586856