K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

1) Ta có \(M=\left|x+1\right|+\left|2x-10\right|+\left|2x-7\right|+\left|x-\frac{11}{2}\right|\)

\(=\left|x+1\right|+\left|\frac{11}{2}-x\right|+\left|2x-10\right|+\left|7-2x\right|\)

\(\ge\left|\frac{13}{2}\right|+\left|-3\right|=\frac{19}{2}\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}\left(x+1\right)\left(\frac{11}{2}-x\right)\ge0\\\left(2x-10\right)\left(7-2x\right)\ge0\end{cases}}\Leftrightarrow\frac{7}{2}\le x\le5\)

5 tháng 3 2018

Em hay tách ra thành các bài khác nhau nhé.

23 tháng 3 2019

tìm gì vậy bạn

30 tháng 6 2020

??????????????????????????????????????????

4 tháng 3 2018

làm kỷ niệm bạn câu 1 (làm chân phương)

\(M=\left|x+1\right|+2\left|x-5\right|+\left|2x-7\right|+\left|\dfrac{x-11}{2}\right|\)

\(2M=\left|2x+2\right|+\left|4x-14\right|+\left|4x-20\right|+\left|x-11\right|\)

\(\left\{{}\begin{matrix}x< -1;M_1=\left(-2x-2\right)+\left(-4x+14\right)+\left(-4x+20\right)+\left(-x+11\right)=-11x+43\\-1\le x< \dfrac{7}{2};M_2=\left(2x+2\right)+\left(-4x+14\right)+\left(-4x+20\right)+\left(-x+11\right)=-7x+47\\\dfrac{7}{2}\le x< 5;M_3=\left(2x+2\right)+\left(4x-14\right)+\left(-4x+20\right)+\left(-x+11\right)=x+19\\5\le x< 11;M_4=\left(2x+2\right)+\left(4x-14\right)+\left(4x-20\right)+\left(-x+11\right)=9x-21\end{matrix}\right.\)

\(11\le x;M_5=\left(2x+2\right)+\left(4x-14\right)+\left(4x-20\right)+\left(x-11\right)=11x-43\)

Min =Min[M1;M2;M3;M4;M5]

M1 ; M2 không có min

min M3 =M(7/2) =7/2+19 =45/2

min M4 =M(5) =9.5 -21 =24

Min M5 =M(11) =11.11-43=78

=> GTNN M =\(2.M_3=45\)

Ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+..+n\right)^2\)

Đặt \(A=1^3+2^3+...+n^3\)

Với n=1\(\Rightarrow A\) đúng

Giả sử n=k đúng

\(\Rightarrow A=\left(1+2+...+k\right)^2\)

Cần cm \(n=k+1\) đúng

Thật vậy ta có:\(A=1^3+2^3+...+k^3+\left(k+1\right)^3\)

\(A=\left(1+2+...+k\right)^2+\left(k+1\right)^3\)(1)

Cần cm:\(\left(k+1\right)^3=2\left(k+1\right)\left(1+2+...+k\right)+\left(k+1\right)^2\)

\(\Leftrightarrow\left(k+1\right)^2\left(k+1-1\right)=2\left(k+1\right)\cdot\dfrac{k\left(k+1\right)}{2}\)

\(\Leftrightarrow\left(k+1\right)^2k=\left(k+1\right)^2k\)(luôn đúng)

\(\Rightarrow\left(1\right)\) đúng \(\Rightarrowđpcm\)

Vậy \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)

16 tháng 3 2020

Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Tia đối của tia CB là Cx

K là giao điểm của BI và CE

Ta thấy \(\widehat{ECx}=\widehat{HAC}\)(cùng phụ với \(\widehat{ACH}\))

\(\Rightarrow\widehat{IAC}=\widehat{BCE}\)(cùng kề bù với hai góc bằng nhau)

Xét \(\Delta IAC\)và \(\Delta BCE\)có:

     AI = CB (theo cách chọn điểm phụ)

    \(\widehat{IAC}=\widehat{BCE}\left(cmt\right)\)

    AC = CE (gt)

Do đó \(\Delta IAC=\Delta BCE\left(c-g-c\right)\)

\(\Rightarrow\widehat{ICA}=\widehat{BEC}\)(hai góc tương ứng)

Mà \(\widehat{ICA}+\widehat{ICE}=90^0\left(=\widehat{ACE}\right)\)nên \(\widehat{BEC}+\widehat{ICE}=90^0\)

\(\Rightarrow\Delta CKE\)vuông tại K\(\Rightarrow\widehat{CKE}=90^0\Rightarrow BE\perp IC\)

Tương tự ta có \(CD\perp BI\)

\(\Rightarrow IH,CD,BE\)đồng quy (ba đường cao trong \(\Delta IBC\))

Mà \(IH\equiv AH\Rightarrow AH,CD,BE\)đồng quy

Vậy \(AH,CD,BE\)đồng quy (đpcm)

19 tháng 5 2019

cm đồng quy hả bạn

19 tháng 5 2019

bạn cm 3 đường cao là ra ngay