Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Tia đối của tia CB là Cx
K là giao điểm của BI và CE
Ta thấy \(\widehat{ECx}=\widehat{HAC}\)(cùng phụ với \(\widehat{ACH}\))
\(\Rightarrow\widehat{IAC}=\widehat{BCE}\)(cùng kề bù với hai góc bằng nhau)
Xét \(\Delta IAC\)và \(\Delta BCE\)có:
AI = CB (theo cách chọn điểm phụ)
\(\widehat{IAC}=\widehat{BCE}\left(cmt\right)\)
AC = CE (gt)
Do đó \(\Delta IAC=\Delta BCE\left(c-g-c\right)\)
\(\Rightarrow\widehat{ICA}=\widehat{BEC}\)(hai góc tương ứng)
Mà \(\widehat{ICA}+\widehat{ICE}=90^0\left(=\widehat{ACE}\right)\)nên \(\widehat{BEC}+\widehat{ICE}=90^0\)
\(\Rightarrow\Delta CKE\)vuông tại K\(\Rightarrow\widehat{CKE}=90^0\Rightarrow BE\perp IC\)
Tương tự ta có \(CD\perp BI\)
\(\Rightarrow IH,CD,BE\)đồng quy (ba đường cao trong \(\Delta IBC\))
Mà \(IH\equiv AH\Rightarrow AH,CD,BE\)đồng quy
Vậy \(AH,CD,BE\)đồng quy (đpcm)
cm đồng quy hả bạn
bạn cm 3 đường cao là ra ngay