Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+y^2+2.\left|x\right|.\left|y\right|\)
\(\Leftrightarrow2xy\le\left|2xy\right|\)( BĐT luôn đúng )
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Bài : 5
a) Ta có : A = 3 + |4 - x|
Vì : \(\left|4-x\right|\ge0\forall x\)
Nên : A = 3 + |4 - x| \(\ge3\forall x\)
Vậy Amin = 3 khi x = 4
b) Ta có : B = 5|1 - 4x| - 1
Vì \(\text{5|1 - 4x|}\ge0\forall x\)
Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)
Vậy Bmin = -1 khi x = 1/4
a)\(\left|2x-3\right|=6\)
\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
b)\(2.\left|3x+1\right|=5\)
\(\left|3x+1\right|=2,5\)
\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
c)\(7,5-3\left|5-2x\right|=-4,5\)
\(3\left|5-2x\right|=12\)
\(\left|5-2x\right|=4\)
\(...\)
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
Bài 1:
Với mọi số hữu tỉ ta luôn có: \(\left\{{}\begin{matrix}x\le\left|x\right|\\-x\le\left|x\right|\end{matrix}\right.\) và \(\left\{{}\begin{matrix}y\le\left|y\right|\\-y\le\left|y\right|\end{matrix}\right.\)
Cộng từng đẳng thức lại \(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)
Hay: \(\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\x+y\ge-\left(\left|x\right|+\left|y\right|\right)\end{matrix}\right.\)\(\Leftrightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu bằng xảy ra khi \(xy=0\)
Câu b tương tự nhé.
Bài 2:
Ta có:
\(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|1-x\right|\ge\left|2001-x+x-1\right|=2000\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow2001\ge x\ge1\)
Vậy \(_{min}A=2000\) khi \(2001\ge x\ge1\)
Bài 2:
Ta có: \(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|x-1\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A\ge\left|2001-x+x-1\right|=\left|2000\right|=2000\)
Dấu " = " khi \(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)
Vậy \(MIN_A=2000\) khi \(1\le x\le2001\)