K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

1) Vì tổng các góc tứ giác bằng 3600nên

Tứ giác AEDF có \(\widehat{A}\)+\(\widehat{E}\)+\(\widehat{D}\)+\(\widehat{F}\)=3600

hay \(\widehat{A}\) + 350+1200+1450 = 3600

=> \(\widehat{A}\) = 3600 -3000

Vậy \(\widehat{A}\) = 600

2) Ta có \(\widehat{A}\) +\(\widehat{B}\) +\(\widehat{C}\) +\(\widehat{D}\) = 3600 (tổng các góc của tứ giác )

hay 1000+600+2x+3x=3600

=> 5x = 200

=> x=200:5

=> x=400

Vậy \(\widehat{C}\) =2.40=800

\(\widehat{D}\) = 3.40=120

1: Đặt góc A=a; góc B=b; góc C=c; góc D=d

Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360

Áp dụng tính chất của DTSBN, ta được:

a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36

=>a=36; b=72; c=108; d=144

2:

góc C+góc D=360-130-105=230-105=125

góc C-góc D=25 độ

=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ

3:

góc B=360-57-110-75=118 độ

số đo góc ngoài tại B là:

180-118=62 độ

a) Ta thấy : A + B + C + D = 360°

Tự áp dụng tính chất dãy tỉ số bằng nhau ta có : 

A = 144° 

B = 108° 

C = 72° 

D = 36° 

b) Vì DE , CE là phân giác ADC và ACD 

=> EDC = ADE = 18° 

=> BCE = ECD = 36° 

Xét ∆DEC ta có : 

EDC + DEC + ECD = 180° 

=> DEC = 126° 

Ta có : góc ngoài tại đỉnh C

=> 180° -  BCD = 108° 

Góc ngoài tại đỉnh D 

=> 180° - ADC = 144° 

Mà DF , CF là phân giác ngoài góc C , D 

=> CDF = 72° 

=> DCF = 54° 

Xét ∆CDF ta có : 

CDF + DFC + DCF = 180° 

=> DFC = 44° 

Đáp án:A=60 độ,B=90 độ,C=120 độ,D=90 độ.Muốn biết thêm hãy alô cho mk

3 tháng 7 2017

xin lỗi k ko thể gp cho bn vì k mới lên lp 7

a: Xét ΔAED có 

\(\widehat{AED}+\widehat{EAD}+\widehat{EDA}=180^0\)

hay \(\widehat{AED}=90^0\)

a: Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

\(\Leftrightarrow\widehat{C}+\widehat{D}=210^0\)

mà \(\widehat{C}-\widehat{D}=20^0\)

nên \(2\cdot\widehat{C}=230^0\)

\(\Leftrightarrow\widehat{C}=115^0\)

\(\Leftrightarrow\widehat{D}=95^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-115^0=65^0\)

b: Ta có: \(\widehat{C}+\widehat{D}=210^0\)

\(\Leftrightarrow\widehat{D}\cdot\dfrac{7}{4}=210^0\)

\(\Leftrightarrow\widehat{D}=120^0\)

\(\Leftrightarrow\widehat{C}=90^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-90^0=90^0\)

16 tháng 7 2023

a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.

Vì AB//CD, ta có góc ACD = góc BAD.

Vậy số đo góc A là 120 độ.

b) Gọi góc BCD là x độ.

Theo giả thiết, góc B phần góc D = 4/5, ta có:

góc B = (4/5) * góc D

= (4/5) * 60

= 48 độ.

Vì AB//CD, ta có góc BCD = góc BAD.

Vậy góc BAD = góc BCD = x độ.

Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.

Ta có: góc A + góc B + góc C + góc D = 360 độ.

Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:

120 + 48 + góc C + 60 = 360

góc C = 360 - 120 - 48 - 60 = 132 độ.

Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.

* Ib = bài 4

28 tháng 8 2020

Bài 1 :                                                   Bài giải

Ta có : \(\widehat{A}-\widehat{B}=10^o\text{ }\Rightarrow\text{ }\widehat{A}=\widehat{B}+10^o\)

Trong tứ giác ABCD có : 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\widehat{B}+10+\widehat{B}+60^o+80^o=360^o\)

\(2\widehat{B}+150^o=360^o\)

\(2\widehat{B}=110^o\)

\(\widehat{B}=55^o\text{ }\Rightarrow\text{ }\widehat{A}=65^o\)

Bài 1) 

Ta có : A + B + C + D = 360 độ

=> A + B = 140 độ

Ta có :

A = \(\frac{140+40}{2}\)= 90 độ

=> B = 90 - 40 = 50 độ

4 tháng 7 2019

Bài 1 :

Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Rightarrow\widehat{A}+\widehat{B}+120^o+100^o=360^o\)

\(\Rightarrow\widehat{A}+\widehat{B}+220^o=360^o\)

\(\Rightarrow\widehat{A}+\widehat{B}=140^o\)

Mà : \(\widehat{A}-\widehat{B}=40^o\)

\(\Rightarrow\widehat{A}+\widehat{A}+\widehat{B}-\widehat{B}=140^o+40^o\)

\(\Rightarrow2\widehat{A}=180^o\Leftrightarrow\widehat{A}=90^o\)

\(\Leftrightarrow\widehat{B}=140^o-\widehat{A}=140^o-90^o=50^o\)

\(KL:\widehat{A}=90^o;\widehat{B}=50^o\)