Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4
Gọi a; b; c; d lần lượt là số đo của các góc M; N; P;Q
Theo đề bài ta có: a+b+c+d=360
\(\frac{a}{1}+\frac{b}{3}+\frac{c}{4}+\frac{d}{7}=\frac{a+b+c+d}{1+3+4+7}=\frac{360}{15}=24\)
\(\Rightarrow\frac{a}{1}=24\Rightarrow a=24\cdot1=24^0\)
\(\Rightarrow\frac{b}{3}=24\Rightarrow b=24\cdot3=72\)
\(\Rightarrow\frac{c}{4}=24\Rightarrow c=24\cdot4=96\)
\(\Rightarrow\frac{d}{7}=24\Rightarrow d=24\cdot7=168\)
Hình vẽ chỉ mang tính chất minh họa nên không đúng lắm đâu nha.Mong bạn thông cảm.
4: Sửa đề: DA=DC
a: BA=BC
DA=DC
=>BD là trung trực của AC
b: góc A+góc C=360-120-80=160 độ
Xét ΔBAD và ΔBCD có
BA=BD
AD=CD
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=160/2=80 độ
3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được
Bài 1 : Bài giải
Ta có : \(\widehat{A}-\widehat{B}=10^o\text{ }\Rightarrow\text{ }\widehat{A}=\widehat{B}+10^o\)
Trong tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\widehat{B}+10+\widehat{B}+60^o+80^o=360^o\)
\(2\widehat{B}+150^o=360^o\)
\(2\widehat{B}=110^o\)
\(\widehat{B}=55^o\text{ }\Rightarrow\text{ }\widehat{A}=65^o\)
a) Vì góc B + góc C = 2000
góc B + góc D = 180 0
góc C + góc D = 120 0
=> góc B + góc C + góc B + góc D + góc C + góc D = 500 0
=> 2B + 2C + 2D = 500 0
= 2( B + C + D ) = 500 0
=> B + C + D = 500 : 2 = 250 độ
Ta có:
góc B + góc C + góc D = 250 0
=> góc D = 250 - ( B + C)
= 2500 - 2000
= 50 0
=> góc B = 2500 - ( C + D)
= 2500 - 1200
= 130 0
=> góc C = 2500 - ( B + D)
= 250 - 180
= 70 độ
Vì góc A + góc B + góc C + góc D = 360 độ
=> góc A = 3600 - ( B + C + D)
= 3600 - ( 1300 + 700 + 500)
= 110 0
Vậy góc A = 110 0
góc B= 130 0
góc C = 70 0
góc D = 500
Bài 1)
Ta có : A + B + C + D = 360 độ
=> A + B = 140 độ
Ta có :
A = \(\frac{140+40}{2}\)= 90 độ
=> B = 90 - 40 = 50 độ
Bài 1 :
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+120^o+100^o=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+220^o=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=140^o\)
Mà : \(\widehat{A}-\widehat{B}=40^o\)
\(\Rightarrow\widehat{A}+\widehat{A}+\widehat{B}-\widehat{B}=140^o+40^o\)
\(\Rightarrow2\widehat{A}=180^o\Leftrightarrow\widehat{A}=90^o\)
\(\Leftrightarrow\widehat{B}=140^o-\widehat{A}=140^o-90^o=50^o\)
\(KL:\widehat{A}=90^o;\widehat{B}=50^o\)