Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Tứ giác ABCD có: góc A + B + C + D = 360o => 100o + 120o + (C + D) = 360o => góc C + D = 140o
DE; CE lần lượt là p/g của góc D; C => góc D1 = D/ 2 ; C1 = C/ 2 => góc (D1 + C1) = (D + C) /2 = 700
Xét tam giác DEC có: góc D1 + góc E + góc C1 = 180o => góc DEC = 180o - (D1 + C1) = 180o - 70o = 110o
Vì tia Dx là p/g ngoài của góc D; DE là p/g trong của góc D => Dx vuông góc với DE => DF vuông góc với DE => góc EDF = 900
=> góc D2 = 90o - D1
Vì tia Cy là p/g ngoài của góc ACD ; CE là p/g trong của góc ACD => Cy vuông góc với CE => CF vuông góc với CE => góc ECF = 90o
=> góc C2 = 90o - C1
Xét tam giác CDF có: góc C2 + góc CFD + góc D2 = 180o
=> góc CFD + (90o - D1 + 90o - C1) = 180o => góc CFD + 180o - (D1 + C1) = 180o => góc CFD = D1 + C1 = 90o
Ta có: góc A+B+C+D=360 =>C+D=150 độ
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác)
=>E=180-75=105
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk)
nên ECF+EDF=90+80=180 độ
=>CFD= 360-180-105=75
Xong rồi, nhưng bạn lập luận chặt chẽ hơn nhé
Tứ giác ABCD có A^+B^+C^+D^=360độ
D^+C^=150độ
\(\frac{1}{2}\)D^+\(\frac{1}{2}\)C^=\(\frac{150}{2}\)độ
\(\Rightarrow\)D2^+C2^=\(\frac{150}{2}\)=75độ
Tam giác DEC có D2^+C2^+CED^=180độ
CED^=105độ
Bài 1 : Bài giải
Ta có : \(\widehat{A}-\widehat{B}=10^o\text{ }\Rightarrow\text{ }\widehat{A}=\widehat{B}+10^o\)
Trong tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\widehat{B}+10+\widehat{B}+60^o+80^o=360^o\)
\(2\widehat{B}+150^o=360^o\)
\(2\widehat{B}=110^o\)
\(\widehat{B}=55^o\text{ }\Rightarrow\text{ }\widehat{A}=65^o\)
a: Xét ΔAED có
\(\widehat{AED}+\widehat{EAD}+\widehat{EDA}=180^0\)
hay \(\widehat{AED}=90^0\)