Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)
\(\Rightarrow xy=2k.5k=10.k^2=90\Rightarrow k^2=9\Rightarrow k=3hoặk=-3\)
* Khi k=3 \(\Rightarrow x=2.3=6;y=5.3=15\)
* Khi k=-3 \(\Rightarrow x=2.\left(-3\right)=-6;y=5.\left(-3\right)=-15\)
Bài 1:
a) \(\frac{x}{-15}=\frac{-60}{x}\Rightarrow x^2=\left(-60\right).\left(-15\right)=900\Rightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)
Bài 2: Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
\(\Rightarrow xy=4k.7k=28k^2=112\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
\(\Rightarrow\orbr{\begin{cases}x=4.2=8\\x=-4.2=-8\end{cases}}\)
Và \(\orbr{\begin{cases}y=7.2=14\\y=-7.2=-14\end{cases}}\)
Bài 3: \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow\frac{4}{3}:\frac{4}{5}=\frac{2}{3}:\frac{1}{10}x\Rightarrow\frac{5}{3}=\frac{2}{3}:\frac{1}{10}x\)
\(\Rightarrow\frac{1}{10}x=\frac{2}{5}\Rightarrow x=4\)
Mk trả lời nốt bài 4 hộ bn MMS_Hồ Khánh Châu nha:
Bài 4:
Gọi x là giá trị chung của 2 phân số trên.
Ta có: \(\frac{a}{b}=\frac{c}{d}=x\)
\(\Rightarrow a=x.b
\)
\(c=x.d\)
Ta lại có:
\(\frac{a+c}{b+d}=\frac{x.b+x.d}{b+d}=\frac{x.\left(b+d\right)}{b+d}=x\)
Và \(\frac{a}{b}=x\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\)
Hk tốt nha
Nói tóm lại là:
@Nguyễn Ngọc Sáng làm sai
@Tuấn Anh Phan Nguyễn trình bày vậy k đc
Ta có: \(\frac{x}{2}=\frac{y}{5}\) và x . y = 90
Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => x = 2k , y = 5k
Từ x . y = 90 => 2k . 5k = 90 => 10k2 = 90 => k2 = 9 => k = \(\pm3\)
* Với k = 3 thì a = 6 ; y = 15
* Với k = - 3 thì a = - 6 ; y = - 15
Vậy a = 6 ; y = 15 hoặc a = - 6 ; y = - 15
Đặt \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow\)x=4k;y=7k(1)
Mà 4k.7k=112
28k2=112
k2=4=22=(-2)2 (2)
Từ (1) và (2) suy ra:
TH1: x=4k\(\Rightarrow\)x=2.4=8
y=7k\(\Rightarrow\)y=7.2=14
TH2: x=4k\(\Rightarrow\)x=(-2).4=-8
y=7k\(\Rightarrow\)y=7.(-2)=-14
Vậy cặp (x;y) TM là:(8;14)(-8;-14)
Ta có: \(\frac{x}{4}=\frac{y}{7}\)
=> 7x=4y(*)
Mà xy=112 => x= \(\frac{112}{y}\)
Thay vào (*) ta được \(7\cdot\frac{112}{y}=4y\)
<=> \(\frac{784}{y}=4y\)
<=> \(784=4y^2\)
<=> \(y^2=196\)
<=> y=\(\pm14\)
=> x= \(\frac{112}{14}=\pm8\)
Vậy các cặp số (x;y) là \(\left(-8;-14\right);\left(8;14\right)\)
\(\frac{x}{4}=\frac{y}{7}\)
=> \(\frac{x^2}{16}=\frac{y^2}{49}=\frac{xy}{4.7}=\frac{112}{28}=4\)
=> \(\hept{\begin{cases}x^2=16.4=64\\y^2=49.4=196\end{cases}}\)
=> \(\hept{\begin{cases}x=\pm8\\y=\pm14\end{cases}}\)
theo bài ra ta cs: \(\frac{x}{4}=\frac{y}{7}\)và xy=112
áp dụng tính chất dãy tỉ số = nhau cs
\(\frac{x}{4}=\frac{y}{7}=\frac{xy}{4\cdot7}=\frac{112}{28}=4\)
=> x=4*4=16
y=7*4=28
Ta có
\(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)
Thay x=4k và y=7k vào xy ta có
\(x\cdot y=4k\cdot7k=112\)
\(\Rightarrow28k^2=112\)
\(\Rightarrow k^2=112:28=4\)
\(\Rightarrow k=\pm2\)
Với \(k=2\)ta có
\(\hept{\begin{cases}x=4\cdot2=8\\y=7\cdot2=14\end{cases}}\)
Với \(k=-2\)ta có
\(\hept{\begin{cases}x=4\cdot-2=-8\\y=7\cdot-2=-14\end{cases}}\)
Ta có các cặp giá trị \(\left(x;y\right)\)là \(\left(8;14\right)\)và \(\left(-8;-14\right)\)
Bài 2:
Giải:
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k,y=7k\)
Do \(xy=112\)
\(\Rightarrow4.k.7.k=112\)
\(\Rightarrow28.k^2=112\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
+) \(k=2\Rightarrow x=8,y=14\)
+) \(k=-2\Rightarrow x=-8,y=-14\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(8,14\right);\left(-8,-14\right)\)
1. Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9\Rightarrow x=9.2=18\)
\(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 18 ; y = 45
sai rùi