K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2022

Tham khảo:

Gọi I là giao điểm của CE và BD.
Theo t/c của đường trung tuyến, ta có: 
CI/CE = 2/3 
hay CI/12 = 2/3 
<=> CI = 2/3.12 
<=> CI = 8 cm 
Tương tự, ta có: 
BI/BD = 2/3 
hay BI/9 = 2/3 
<=> BI = 2/3.9 
<=> BI = 6 cm 
t.g BIC vuông tại I nên: 
BC^2 = IC^2 + BI^2 
<=> BC^2 = 8^2 + 6^2 
<=> BC^2 = 100 
<=> BC = 10 cm

3 tháng 4 2022

Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC.

Theo tính chất đường trung tuyến của tam giác ta có BG = \(\dfrac{2}{3}\) BD; CG = \(\dfrac{2}{3}\) CE

Mà BD = 9 cm; CE = 12 cm nên BG = \(\dfrac{2}{3}\) . 9 = 6 cm; CG = \(\dfrac{2}{3}\) . 12 cm = 8 cm.

Xét tam giác BGC vuông tại G.

Ta có: BC2 = BG2 + CG(định lý Pytago)

=> BC2 = 62 + 82 

=> BC2 = 100

=> BC = \(\sqrt{100}\) = 10 cm

Vậy BC = 10 cm.

15 tháng 5 2016

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

=> tam giác OBC vuông tại O=> BD_|_CE tại O

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100

$BC^2=10^2=100$BC2=102=100

=> tam giác OBC vuông tại O=> BD_|_CE tại O

2 tháng 4 2021

undefined

18 tháng 3 2018

Ta có G là trong tâm tam giác. Theo đề ra ta có:

BD = 9cm

=> BG = 6cm(\(BG=\frac{2}{3}BD\))

CE = 12cm ( \(CG=\frac{2}{3}CE\))

Ta có BG2 + CG2 = 62+82   = 36+64=100

mà BC2=102=100

=> BG2 + CG2 = BC2

Suy ra tam giác BCG vuông tại G theo py ta go đảo

19 tháng 3 2016

Theo t/c của đường trung tuyến, ta có: 

CI/CE = 2/3 
hay CI/12 = 2/3 
<=> CI = 2/3.12 
<=> CI = 8 cm 

Tương tự, ta có: 
BI/BD = 2/3 
hay BI/9 = 2/3 
<=> BI = 2/3.9 
<=> BI = 6 cm 

t.g BIC vuông tại I nên: 
BC^2 = IC^2 + BI^2 
<=> BC^2 = 8^2 + 6^2 
<=> BC^2 = 100 
<=> BC = 10 cm

28 tháng 3 2016

Ai giúp mình với mình sắp phải nộp bài rồi

28 tháng 3 2016

bài này là bài 94 nâng cao và các chuyên đề toán 7

13 tháng 1 2016

hình như thiếu đề bạn à , G ở đâu , bạn ghi lại đề đi , rồi gửi link qua cho mk