Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC
1. Trục căn thức ở mẫu:
\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)
=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)
\(=\frac{\sqrt{2009}-1}{4}\)
2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)
\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)
\(=6+3x\)
=> \(x^3-3x=6\)
=> \(B=x^3-3x+2000=6+2000=2006\)
\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(M=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{x-9}\)
\(=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
b) Ta có: \(x=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\left|\sqrt{3}-1\right|}\)
\(=\sqrt{\sqrt{3}-\sqrt{3}+1}=\sqrt{1}=1\)( thỏa mãn ĐKXĐ )
Thay \(x=1\)vào M ta được:
\(M=\frac{3\sqrt{1}}{\sqrt{1}-3}=\frac{3}{1-3}=\frac{-3}{2}\)
c) \(M=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\sqrt{x}-9+9}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)+9}{\sqrt{x}-3}=3+\frac{9}{\sqrt{x}-3}\)
Vì \(x\inℕ\)\(\Rightarrow\)Để M là số tự nhiên thì \(\frac{9}{\sqrt{x}-3}\inℕ\)
\(\Rightarrow9⋮\left(\sqrt{x}-3\right)\)\(\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\)(1)
Vì \(x\ge0\)\(\Rightarrow\sqrt{x}\ge0\)\(\Rightarrow\sqrt{x}-3\ge-3\)(2)
Từ (1) và (2) \(\Rightarrow\sqrt{x}-3\in\left\{-3;-1;1;3;9\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\)\(\Rightarrow x\in\left\{0;4;16;36;144\right\}\)( thỏa mãn ĐKXĐ )
Thử lại với \(x=4\)ta thấy M không là số tự nhiên
Vậy \(x\in\left\{0;16;36;144\right\}\)
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
\(N=1:\left(\frac{x+2}{\sqrt{x^3}-1}+\frac{\sqrt{x}+1}{x+1+\sqrt{x}}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(N=1:\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}+\frac{x-1}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}-\frac{\left(x+1+\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}\right)\)
\(N=1:\left(\frac{x+2+x-1-x-1-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}\right)\)
\(N=1:\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+1+\sqrt{x}\right)}\right)\)
\(N=1:\left(\frac{\sqrt{x}}{\left(x+1+\sqrt{x}\right)}\right)\)
\(N=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
y b
chia 2 ve cho can 2
tc
\(\sqrt{x}+1+\frac{1}{\sqrt{x}}\)
tc \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)(bdt cosi)
\(\sqrt{x}+1+\frac{1}{\sqrt{x}}\ge3\)
=> dpcm
may mk loi font chu thong cam viet ko co dau
\(1.M=\dfrac{2\sqrt{y}}{x-y}+\dfrac{1}{\sqrt{x}-\sqrt{y}}+\dfrac{1}{\sqrt{x}+\sqrt{y}}=\dfrac{2\sqrt{y}+\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{2}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(2a.N=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+11\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\left(x\ge0;x\ne9\right)\)
b. Thay x = 49 ( thỏa mãn ĐKXĐ ) vào biểu thức N , ta có :
\(N=\dfrac{3\sqrt{49}}{\sqrt{49}-3}=\dfrac{21}{4}\)
\(3.\dfrac{\sqrt{5}}{1-\sqrt{3}}-\sqrt{3}+\dfrac{1}{1+\sqrt{3}}=\dfrac{5\left(1+\sqrt{3}\right)+1-\sqrt{3}}{1-3}-\sqrt{3}=\dfrac{6+4\sqrt{3}+2\sqrt{3}}{-2}=\dfrac{6\left(\sqrt{3}+1\right)}{-2}=-3\left(\sqrt{3}+1\right)\)