Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
\(p=\left(x-1\right)\left(x+7\right)\left(x+2\right)\left(x+4\right)+2075\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+8\right)+2075\)
\(=\left(x^2+6x+2-9\right)\left(x^2+6x+2+6\right)+2075\)
\(=\left(x^2+6x+2\right)^2-3\left(x^2+6x+2\right)+2021\)
\(\Rightarrow p\) chia q dư \(2021\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a) Ta có \(P\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+a\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+a\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+a\)
Đặt \(b=x^2+8x+9\) khi đó P(x) có dạng:
\(\left(b-2\right)\left(b+6\right)+a=b^2+4b+a-12=b\left(b+4\right)+a-12\)
nên để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow a-12=0\Leftrightarrow a=12\)
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
\(P=\left(x-1\right)\left(x+2\right)\left(x+4\right)\left(x+7\right)+2069\)
\(=\left(x-1\right)\left(x+7\right)\left(x+2\right)\left(x+4\right)+2069\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+8\right)+2069\)
\(=\left(x^2+6x+2-9\right)\left(x^2+6x+2+6\right)+2069\)
Mà \(x^2+6x+2=Q\)
\(=>P=\left(Q-9\right)\left(Q+6\right)+2069=Q^2-3Q-54+2069\)
\(=Q^2-3Q+2015=Q\left(Q-3\right)+2015\)
Dễ thấy \(Q\left(Q-3\right)=BS\left(Q\right)\)
\(=>P\)chia Q có số dư là 2015
Vậy................