K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Câu 1 :

A B C H K

a) Xét \(\Delta AHC,\Delta KHC\) có:

\(\widehat{CAH}=\widehat{CKH}\left(=90^{^O}\right)\)

\(CH:Chung\)

\(\widehat{ACH}=\widehat{KCH}\) (CH là tia phân giac của \(\widehat{C}\))

=> \(\Delta AHC=\Delta KHC\) (cạnh huyền - góc nhọn) (*)

b) Từ (*) suy ra :

\(AC=CK\) (2 cạnh tương ứng)

Xét \(\Delta AKC\) có :

\(AC=CK\left(cmt\right)\)

=> \(\Delta AKC\) cân tại A (đpcm)

7 tháng 2 2018

D E F 10 24 26

Xét \(\Delta DEF\) có :

\(DF^2=EF^2-DE^2\) (Định lí PITAGO đảo)

=> \(DF^2=26^2-10^2\)

=> \(DF^2=576^{ }\)

=> \(DF=\sqrt{576}=24\)

Mà theo bài ra : \(DF=24\left(cm\right)\)

Do đó , \(\Delta DEF\) là tam giác vuông

7 tháng 2 2018

a) Xét tam giác ABE và HBE có :

Cạnh BE chung

AB = BH

\(\widehat{ABE}=\widehat{HBE}\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)

\(\Rightarrow\widehat{BHE}=\widehat{BAE}=90^o\Rightarrow EH\perp BC\)

b) Gọi giao điểm của AH và BE = I.

Dễ dàng chứng minh được \(\Delta AIB=\Delta HIB\left(c-g-c\right)\)

\(\Rightarrow AI=IH;\widehat{AIB}=\widehat{HIB}=90^o\)

Vậy BE là trung trực AH.

Sau này ta có thể dùng:

Vì BA = BH; EA = EH (\(\Delta ABE=\Delta HBE\) ) nên BE là trung trực AH.

c) Xét hai tam giác vuông BHK và BAC có

Góc B chung

BH = BA

\(\Rightarrow\Delta BHK=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow KH=AC\)

Lại có \(AE=HE\Rightarrow EC=EK\)

d) Xét tam giác AKC có CA và KH là các đường cao nên E là trực tâm, suy ra BE là đường cao.

Vậy thì \(BE\perp KC\)

Lại có \(BE\perp AH\Rightarrow\)AH//KC

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M sao...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0

B A C D F H E

Xét \(\Delta DFA\)\(\Delta DAE\). Có

AD cạnh chung

AF = AE (gt);

góc DAF = góc DAE (gt)

\(\Rightarrow\) \(\Delta DFA=\Delta DAE\left(c.g.c\right)\)

\(\Rightarrow\) DF = DE (Hai cạnh tương ứng)

Các bạn giúp mình nhanh nha thứ bảy mình kiểm tra rồi.

Mình hứa tích cho ba người đầu tiên.

a: Xét ΔABD và ΔKBD có

BA=BK

góc ABD=góc KBD

BD chung

Do đó: ΔABD=ΔKBD

Suy ra: DA=DK

b: Ta có: ΔBAD=ΔBKD

nên góc BKD=góc BAD=90 độ

=>DK vuông góc với BC

=>DK//AH