K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2018

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)

\(\Rightarrow S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{abc}{abc+c.abc+ca}\)

\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{1}{1+b+bc}+\frac{abc}{ac.\left(bc+b+1\right)}\)

\(S=\frac{bc}{bc+b+1}+\frac{1}{1+b+bc}+\frac{b}{bc+b+1}\)

\(S=\frac{bc+b+1}{bc+b+1}\)

\(S=1\)

Điều kiện \(c\ge0\);\(a;b>0\)

Ta có: \(a>b\)

\(\Rightarrow ac\ge bc\)

\(\Rightarrow ac+ab\ge bc+ab\)

\(a.\left(b+c\right)\ge b.\left(c+a\right)\)

\(\Rightarrow\frac{a+c}{b+c}\ge\frac{a}{b}\)

Tham khảo nhé~

16 tháng 12 2021

Với \(a=b=c=0\Leftrightarrow S=abc=0\)

Với \(a,b,c\ne0\)

Ta có \(\dfrac{a}{1+ab}=\dfrac{b}{1+bc}=\dfrac{c}{1+ac}\Leftrightarrow\dfrac{1+ab}{a}=\dfrac{1+bc}{b}=\dfrac{1+ac}{c}\)

\(\Leftrightarrow\dfrac{1}{a}+b=\dfrac{1}{b}+c=\dfrac{1}{c}+a\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{1}{a}-\dfrac{1}{c}=\dfrac{c-a}{ac}\\b-c=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab}\\c-a=\dfrac{1}{c}-\dfrac{1}{b}=\dfrac{b-c}{bc}\end{matrix}\right.\)

Nhân vế theo vế ta đc \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{ab\cdot bc\cdot ca}\)

\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow\left[{}\begin{matrix}abc=1\\abc=-1\end{matrix}\right.\)

10 tháng 7 2016

Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)

Vậy M = 6

10 tháng 7 2016

Thanks

 

30 tháng 11 2017

Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc

1/abc+bc+b  = 1/1+bc+b

=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1

=> ĐPCM

k mk nha

30 tháng 11 2017

Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc

1/abc+bc+b  = 1/1+bc+b

=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1

=> ĐPCM


 

Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)

Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)

Áp dụng t/c bắc cầu ta dc : \(a=b=c\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)

=>a2+b2=2ab

=>a2-2ab+b2=0

=>(a-b)2=0=>a=b

tương tự=>b=c

=>a=b=c

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)

24 tháng 9 2016

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)

\(=3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)

\(=3+2+2+2=9\)