Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/2+1/4+1/8+1/16+1/32+...+1/2048+1/4096
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
Cái này mình làm không chắc chắn đâu nha !
10^n lúc nào chia 9 cũng dư 1(100 : 9 dư 1; 1000 chia 9 dư 1.....)
18 chia hết cho 9 => 18n chia hết cho 9
Vậy A= 10^n+18n-1 chia hết cho 9
Mà số chia hết cho 9 là chia hết cho 81 nên A chia hết cho 81
chúng minh A là số chính phương mà chia hết cho 9 ý
S=2+22+23+....+2100
2.S=2+(22+23+...+299+2100)
2.S=22+23+24+...+2100+2101
-S=2+22+23+24+...+2100
2.S-S=2101-2
S=2100
Lưu Ý:Những chữ số mình viết thẳng hàng hay như thế nào thì bạn trình bày y như thế mới đúng ,kể cả gạch dài nha!
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)
\(A< \frac{1}{4}-\frac{1}{100}\)
\(A< \frac{6}{25}< \frac{1}{4}\)
1+2+4+8+16+32+64+128+256+512+1024+2048
=1+(2+8)+(4+16)+(32+128)+(64+256)+(512+2048)+1024
=1+10+20+160+320+2560+1024
=4095
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 = 4095
k nha công chúa nụ cười =_= ^_^
\(A=3\left(1+3+3^2\right)+...+3^{2011}\left(1+3+3^2\right)\)
\(=13\cdot\left(3+...+3^{2011}\right)⋮13\)
Đặt \(A=1+2+4+.........+4096\)
\(2A=2+4+8+......+8192\)
\(\Rightarrow2A-A=8192-1\)
\(\Rightarrow A=8191\)
Đặt \(S=1+2+4+...+1024+2048+4096\)
\(S=1+2^1+2^2+2^3+....+2^{10}+2^{11}+2^{12}\)
\(2S=2+2^2+2^3+....+2^{11}+2^{12}+2^{13}\)
\(2S-S=\left(2+2^2+2^3+....+2^{12}+2^{13}\right)-\left(1+2+2^2+....+2^{11}+2^{12}\right)\)
\(S=2^{13}-1=8192-1=8191\)