Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
\(S=\left\{1,\dfrac{4}{11}\right\}\)
Đặt C(x)=0
\(\Leftrightarrow11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\11x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
Vậy: Nghiệm của đa thức \(C\left(x\right)=11x^2-15x+4\) là 1 và \(\dfrac{4}{11}\)
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
Đáp án:
P=\(\frac{2}{3}\)
Giải thích các bước giải:
x:y:z=5:4:3
⇒ x5x5 =y4y4 ⇒y= 4x54x5
⇒ x5x5 =z3z3 ⇒z= 3x53x5
Thay vào biểu thức ta được:
P= x+2y−3zx−2y+3zx+2y−3zx−2y+3z= x+2.4x5−33x5x−2.4x5+33x5x+2.4x5−33x5x−2.4x5+33x5 =4x56x54x56x5 =2323
Vậy P=\(\frac{2}{3}\)
# Chúc bạn học tốt!
Vì x,y,z tỉ lệ với các số 5,4,3 nên ta có : \(x:y:z=5:4:3\) hoặc \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Ta lại có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
Đặt \(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=k\Rightarrow\hept{\begin{cases}x=5k\\2y=8k\\3z=9k\end{cases}}\)
\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
Bài 5:
a: \(A\left(1\right)=1^5-3\cdot1^4+1^2-5=1-3+1-5=-6\)
\(A\left(-1\right)=\left(-1\right)^5-3\cdot\left(-1\right)^4+\left(-1\right)^2-5\)
\(=-1-3\cdot1+1-5=-6-3+1=-8\)
b: \(B\left(1\right)=-1^4+2\cdot1^3-3\cdot1^2+4\cdot1+5\)
=-1+2-3+4+5
=1-3+4+5
=-2+4+5
=2+5
=7
\(B\left(-1\right)=-\left(-1\right)^4+2\cdot\left(-1\right)^3-3\cdot\left(-1\right)^2+4\cdot\left(-1\right)+5\)
\(=-1+2\cdot\left(-1\right)-3\cdot1-4+5\)
\(=-2-3=-5\)
c: \(C\left(1\right)=1+1^2+1^4+...+1^{100}\)
=1+1+...+1
=51
\(C\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+...+\left(-1\right)^{100}\)
=1+1+...+1
=51
d:
Từ x3 đến x101 thì có \(\dfrac{101-3}{2}+1=\dfrac{98}{2}+1=50\)(số hạng)
\(D\left(1\right)=1+1^3+1^5+...+1^{101}\)
=1+1+...+1
=51
\(D\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{101}\)
\(=1-\left(1+1+...+1\right)\)
=1-50=-49