Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
=>HM=HN
mà HM<HB(ΔHMB vuông tại M)
nên HN<HB
c: Ta có: DH//AC
=>\(\widehat{DHA}=\widehat{HAC}\)
mà \(\widehat{HAC}=\widehat{HAB}\)
nên \(\widehat{DHA}=\widehat{DAH}\)
=>DA=DH
Ta có: \(\widehat{DAH}+\widehat{DBH}=90^0\)(ΔAHB vuông tại H)
\(\widehat{DHA}+\widehat{DHB}=90^0\)
mà \(\widehat{DAH}=\widehat{DHA}\)
nên \(\widehat{DBH}=\widehat{DHB}\)
=>DB=DH
mà DH=DA
nên DB=DA
=>D là trung điểm của AB
=>\(DH=\dfrac{1}{2}AB\)
a) Do ∆ABC cân tại A (gt)
AH là đường cao (gt)
⇒ AH cũng là đường trung tuyến
⇒ H là trung điểm của BC
⇒ BH = HC
b) ∆CHN vuông tại N
⇒ CH là cạnh huyền nên là cạnh lớn nhất
⇒ CH > HN
Mà BH = CH (cmt)
⇒ BH > HN
c) ∆ABC cân tại A (gt)
AH là đường cao (gt)
⇒ AH là đường phân giác
⇒ ∠BAH = ∠CAH
⇒ ∠DAH = ∠CAH
Do HD // AC (gt)
⇒ ∠DHA = ∠CAH (so le trong)
Mà ∠DAH = ∠CAH (cmt)
⇒ ∠DHA = ∠DAH
⇒ ∆AHD cân tại D
⇒ DH = AD (1)
Do DH // AC (gt)
⇒ ∠DHB = ∠ACB (đồng vị)
Mà ∠ACB = ∠ABC (∆ABC cân tại A)
⇒ ∠DHB = ∠ABC
⇒ ∠DHB = ∠DBH
⇒ ∆BHD cân tại D
⇒ DH = BD (2)
Từ (1) và (2) ⇒ D là trung điểm của AB
⇒ DH = AD = BD = AB : 2