Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
a) Ta có: \(\dfrac{AE}{AB}=\dfrac{2}{5}\)
\(\dfrac{AF}{AC}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)\(\left(=\dfrac{2}{5}\right)\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
Suy ra: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{2}{5}=\dfrac{EF}{12}\)
hay EF=4,8(cm)
Vậy: EF=4,8cm
x3 _ x2 _ 4x - 4 = 0
x mũ 2(x+1)- 4(x+1)=0
(x mũ 2 - 4) (x+1)=0
(x+2) (x-2) (x+1) =0
suy ra (x+2)=0
(x-2)=0
(x+1)=0
vậy x=-2
x=2
x= -1
good luck!
Sửa đề : \(x^3-x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)
$P=4a^2+4a(b-3)+b^2-6b+9+3b^2-6b+3$
$=4a^2+2.2a.(b-3)+(b-3)^2+3.(b-1)^2$
$=(2a+b-3)^2+3.(b-1)^2$
Mà $(2a+b-3)^2 \geq 0;3.(b-1)^2 \geq 0$ với mọi $a;b$
Nên $P=(2a+b-3)^2+3.(b-1)^2 \geq 0$
Dấu $=$ xảy ra $⇔(2a+b-3)^2=0;3.(b-1)^2=0⇔2a+b-3=0;b=1⇔a=1;b=1$
Vậy $MinP=0$ tại $a=b=1$
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB∼ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
a) (Bạn tự vẽ hình ạ)
Ta có AD.AB = AE.AC
⇒ \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét \(\Delta ABC\) và \(\Delta AED\) có:
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
\(\widehat{A}:chung\)
⇒ \(\Delta ABC\sim\Delta AED\) \(\left(c.g.c\right)\)
⇒ DE // BC
a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔDAB(g-g)
Lời giải:
Vận tốc trung bình đi từ A đến B là:
$\frac{20+30}{2}=25$ (km/h)
Kiến thức cần nhớ:
Vận tốc trung bình bằng tổng quãng đường chia cho tổng thời gian đi hết quãng đường đó!
Công thức Vtb = \(\dfrac{S_1+S_2+...+S_n}{t_1+t_2+...+t_n}\)
Giải chi tiết:
Gọi quãng đường AB là: S (km); S > 0
Thời gian người đó đi hết nửa quãng đường đầu là:
\(\dfrac{S}{2}\) : 20 = \(\dfrac{S}{40}\) (giờ)
Thời gian người đó đi hết nửa quãng đường sau là:
\(\dfrac{S}{2}\) : 30 = \(\dfrac{S}{60}\) (giờ)
Vận tốc trung bình của người đó đi từ A đến B là:
Áp dụng công thức Vtb = \(\dfrac{S_1+S_2}{t_1+t_2}\) ta có
Vtb = \(\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{60}}\)
Vtb = \(\dfrac{S}{S.\left(\dfrac{1}{40}+\dfrac{1}{60}\right)}\)
Vtb = \(\dfrac{1}{\dfrac{1}{24}}\)
Vtb = 24 (km/h)
1) $x^2-y^2-2x+2y$
$=(x^2-y^2)-(2x-2y)$
$=(x-y)(x+y)-2(x-y)$
$=(x-y)(x+y-2)$
2) $2x+2y-x^2-xy$
$=(2x+2y)-(x^2+xy)$
$=2(x+y)-x(x+y)$
$=(x+y)(2-x)$
3) $3a^2-6ab+3b^2-12c^2$
$=3(a^2-2ab+b^2-4c^2)$
$=3[(a^2-2ab+b^2)-4c^2]$
$=3[(a-b)^2-(2c)^2]$
$=3(a-b-2c)(a-b+2c)$
4) $x^2-25+y^2+2xy$
$=(x^2+2xy+y^2)-25$
$=(x+y)^2-5^2$
$=(x+y-5)(x+y+5)$
5) $a^2+2ab+b^2-ac-bc$
$=(a^2+2ab+b^2)-(ac+bc)$
$=(a+b)^2-c(a+b)$
$=(a+b)(a+b-c)$
6) $x^2-2x-4y^4-4y$
$=(x^2-4y^2)-(2x+4y)$
$=[x^2-(2y)^2]-2(x+2y)$
$=(x-2y)(x+2y)-2(x+2y)$
$=(x+2y)(x-2y-2)$
7) $x^2y-x^3-9y+9x$
$=(x^2y-x^3)-(9y-9x)$
$=x^2(y-x)-9(y-x)$
$=(y-x)(x^2-9)$
$=(y-x)(x^2-3^2)$
$=(y-x)(x-3)(x+3)$
8) $x^2(x-1)+16(1-x)$
$=x^2(x-1)-16(x-1)$
$=(x-1)(x^2-16)$
$=(x-1)(x^2-4^2)$
$=(x-1)(x-4)(x+4)$
9) $3x^2-6x+9x^3$
$=3x^2+3x-9x+9x^3$
$=3x(x+1)-9x(1-x^2)$
$=3x(x+1)+9x(x^2-1)$
$=3x(x+1)+9x(x-1)(x+1)$
$=(x+1)[3x+9x(x-1)]$
$=(x+1)(3x+9x^2-9x)$
$=(x+1)(9x^2-6x)$
$=3(x+1)(3x^2-2x)$
$=3x(x+1)(3x-2)$
10) $10x(x-y)-6y(y-x)$
$=10x(x-y)+6y(x-y)$
$=(x-y)(10x+6y)$
$=2(x-y)(5x+3y)$
11) $3x^2+5y-3xy-5x$
$=(3x^2-3xy)-(5x-5y)$
$=3x(x-y)-5(x-y)$
$=(x-y)(3x-5)$
12) $x^5-3x^4+3x^3-x^2$
$=x^2(x^3-3x^2+3x-1)$
$=x^2(x-1)^3$
13) $(x^2+1)^2-4x^2$
$=(x^2+1)^2-(2x)^2$
$=(x^2+1-2x)(x^2+1+2x)$
$=(x^2-2x+1)(x^2+2x+1)$
$=(x-1)^2(x+1)^2$
14) $x^2-4x-5$
$=x^2+x-5x-5$
$=x(x+1)-5(x+1)$
$=(x+1)(x-5)$
15) $x^2+8x+15$
$=x^2+3x+5x+15$
$=x(x+3)+5(x+3)$
$=(x+3)(x+5)$
16) $81x^4+4$
$=[(9x^2)^2+2\cdot9x^2\cdot 2+2^2]-2\cdot9x^2\cdot2$
$=(9x^2+2)^2-36x^2$
$=(9x^2+2)^2-(6x)^2$
$=(9x^2+2-6x)(9x^2+2+6x)$
17) $2x^2+3x-5$
$=2x^2-2x+5x-5$
$=2x(x-1)+5(x-1)$
$=(x-1)(2x+5)$
18) $16x-5x^2-3$
$=-5x^2+16x-3$
$=-5x^2+15x+x-3$
$=-5x(x-3)+(x-3)$
$=(x-3)(1-5x)$
$Toru$