Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Ta có: \(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\)( ĐK : \(n\ne-1\))
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)=\left\{13;-13;1;-1\right\}\)
Ta có bảng sau
n+1 | 13 | -13 | 1 | -1 |
n | 12 | -14 | 0 | -2 |
Vậy để \(\dfrac{2n+15}{n+1}\) là số nguyên thì \(n\in\left\{12;-14;0;-2\right\}\)
Chúc bạn học tốt
\(\dfrac{2n+15}{n+1}\in Z\Rightarrow2n+15⋮n+1\)
\(\Rightarrow2n+15-2\left(n+1\right)⋮n+1\)
\(\Rightarrow13⋮n+1\)
\(\Rightarrow n+1=Ư\left(13\right)\)
\(\Rightarrow n+1=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow n=\left\{-14;-2;0;12\right\}\)
Cách hai: Theo bezout ta có: \(\dfrac{2n+15}{n+1}\) \(\in\) Z ⇔ 2.(-1) + 15 ⋮ n +1
⇔ 13 ⋮ n +1 ⇒ n + 1 \(\in\) { -13; -1; 1; 13} ⇒ n \(\in\) { -14; -2; 0; 12}
\(\frac{2n-3}{n+1}=\frac{n+1+n+1-5}{n+1}=\frac{-5}{n+1}\)
=\(\Rightarrow n+1\in\text{Ư}\left(-5\right)=\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow n+1=1\Rightarrow n=0\)
\(\Leftrightarrow n+1=5\Rightarrow n=4\)
\(\Leftrightarrow n+1=-1\Rightarrow n=-2\)
\(\Leftrightarrow n+1=-5\Rightarrow n=-6\)
Vậy: \(n\in\left\{0;4;-2;-6\right\}\)
Để B là số nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-1;-3;1;-5\right\}\)
\(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\left(ĐKXĐ:n\ne-1\right)\)
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)\)
Xét bảng :
Ư(13) | n+1 | n |
13 | 13 | 12 |
-13 | -13 | -14 |
1 | 1 | 0 |
-1 | -1 | -2 |
Vậy để 2n+15/n+1 là số nguyên thì \(n\in\left\{-14;-2;0;12\right\}\)