Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Ta có
A \(\in\)Z <=> n+10 chia hết cho 2n+8
<=> 2n+20 chia hết cho 2n+8
<=> 2n+20-(2n+8) chia hết cho 2n+8
<=> 12 chia hết cho 2n+8
<=> 2n+8 \(\in\) Ư(12)
Mà n là số tự nhiên nên \(2n+8\ge8\)
Ta có \(Ư_{\left(12\right)}=\left(1;2;3;4;12;-1;-2;-3;-4;-6;-12\right)\)
=> 2n+8=12
=> 2n=4
=>n=2
Vậy số cần tìm là 2
1.
a) \(A=2+\frac{1}{n-2}\)
\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)
b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)
\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)
\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)
\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy A là phân số tối giản.
2.
- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )
- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )
- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3
Vậy p - 2014 là hợp số
\(\frac{x-1}{9}=\frac{8}{3}\Rightarrow\)\(\frac{x-1}{9}=\frac{24}{9}\Rightarrow x-1=24\)
x=24+1
x=25
Vậy x=25
\(\frac{x-1}{9}=\frac{8}{3}\)
\(\Leftrightarrow\left(x-1\right):9=\frac{8}{3}\)
\(\Leftrightarrow\left(x-1\right)=24\)
\(\Leftrightarrow x=24+1\)
\(\Leftrightarrow x=25\)
Ta có
(+) \(n\ne7\) để phân số có nghĩa
(+) Phân số tối giản
<=> 2n+3 không chia hết cho n+7
<=> 2(n+7) - (2n+3) không chia hết cho n+7
<=> 2n+7 - 2n - 3 không chia hết cho n+7
<=> 4 không chia hết cho n+7
\(\Rightarrow n+7\notin\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\notin\left\{-6;-5;-3;-8;-9;-11\right\}\)
Vậy để phân số tối giản thì \(n\notin Z\) ; \(n\notin\left\{-6;-5;-3;-8;-9;-11;7\right\}\)
+đê pso có nghĩa n#-7 +để pso tgian thì 2n+3 ko chia hết cho n+7 => 2(n+7)-(2n+3) ko chia hết cho n+7 => 2n+14-2n-3 ko chia hết cho n+7 => 11 ko chia hết cho n+7 => n+7 ko thuộc ước (11) = (1;11) => n ko thuộc (-6;4)
Để A thuộc luôn tồn tại mà n thuộc Z suy ra n+8 chia hết cho 2n-5
suy ra (n+8).2 chia hết cho n+8 hay2n+16
Suy ra (2n+16)-(2n-5) chian hết cho 2n-5
suy ra 21 chia hết cho 2n-5suy ra 2n-5 thuộc Ư(21)={-21;;21;3;-3;7;-7;1;-1}
suy ra 2n thuộc{-16;26;8;2;12;-2;6;4}
suy ra n thuộc{-8;13;4;1;6;-1;3;2}
Vậy n thuộc{-8;13;4;1;6;-1;3;2}
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản