Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4+4
=(x^2)^2+4x^2+4-4x^2
=(x^2+2)^2-4x^2
=(x^2-2x+2)(x^2+2x+2)
x5 + x4 + 1 = x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2 ( x3 - x - 1 ) - x ( x3 - x - 1 ) + 1 ( x3 - x - 1 )
= ( x3 - x - 1 ) ( x2 - x + 1 )
\(54x^3+16y^3\)
\(=2\left(27x^3+8y^3\right)\)
\(=2\left[\left(3x\right)^3+\left(2y\right)^3\right]\)
\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
\(x^4-16y^4\)
\(=\left(x^2\right)^2-\left(4y^2\right)^2\)
\(=\left(x^2-4y^2\right)\left(x^2+4y^2\right)\)
\(=\left(x-2y\right)\left(x+2y\right)\left(x^2+4y^2\right)\)
Chúc bạn học tốt.
\(54x^3+16y^3=2\left(27x^3+8y^3\right)\)
\(=2\left[\left(3x\right)^3+\left(2y\right)^3\right]\)
\(=2\left(3x+2y\right)\left[\left(3x\right)^2-3x.2y+\left(2y\right)^2\right]\)
\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
a, 4x4+1
=(2x)2+1
=(2x+1)(2x-1)
b,c tách làm bình phương rồi làm tương tự
\(x^4+5x^3+10x-4\)
\(=x^4+5x^3-2x^2+2x^2+10x-4\)
\(=x^2\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)\)
\(=\left(x^2+2\right)\left(x^2+5x-2\right)\)
Mình cũng vừa làm được cách 2:
\(x^4+5x^3+10x-4\)
=\(x^4-4+5x^3+10x\)
=\(\left(x^2+2\right)\left(x^2-2\right)+5x\left(x^2+2\right)\)
=\(\left(x^2+2\right)\left(x^2+5x-2\right)\)
\(x^4-5x^2+4=x^4-x^2-4x^2+4\)
\(=\left(x^2-1\right)\left(x^2+1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+1-4\right)=\left(x^2-1\right)\left(x^2-3\right)\)
f) \(x^2-6x+5=\left(x^2-x\right)+\left(-5x+5\right)=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
g) \(x^4+64=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
\(x^2-6x+5\)
\(=\left(x^2-2.3x+3^2\right)-4\)
\(=\left(x-3\right)^2-2^2\)
\(=\left(x-3-2\right)\left(x-3+2\right)\)
\(=\left(x-5\right)\left(x-1\right)\)
x4-25x2+26x-4
= (x4-25x2)+ (26x-4)
= ((x2)2-(5x)2)+ 2(13x-2)
= (x2-5x)(x2+5x)
\(x^5+x^4+2\)
\(=x^5+x^4+x^2-x^2+1+1\)
\(=\left(x^5-x^2\right)+\left(x^4+x^2+1\right)\)
\(=\left(x^5-x^2\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x^3-1\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(\left(x^2+1\right)^2-x^2\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3+1-x\right)+1\)
x4 + 4
= (x2)2 + 22
= x4 + 2.x2.2 + 4 – 4x2
(Thêm bớt 2.x2.2 để có HĐT (1))
= (x2 + 2)2 – (2x)2
(Xuất hiện HĐT (3))
= (x2 + 2 – 2x)(x2 + 2 + 2x)