Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f,x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
\(g,x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
\(x^2-y^2+6x+9=\left(x+3\right)^2-y^2=\left(x+3+y\right)\left(x+3-y\right)\)
\(x^3+3x^2-9x-27=\left(x-3\right)\left(x^2+3x+9\right)+3x\left(x-3\right)=\left(x-3\right)\left(x^2+6x+9\right)=\left(x-3\right)\left(x+3\right)^2\)
\(b,x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)
\(c,x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)
\(=x^4-2x^3+6x^2-8x+8=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)
b)\(x^4+6x^3+7x^2-6x+1=\left(x^2\right)^2+\left(3x\right)^2+\left(-1\right)^2+2.x^2.3x\)+2.3x.(-1)+2.x2.(-1)
\(=\left(x^2+3x-1\right)^2\)
1) = \(x^2-1=\left(x-1\right)\left(x+1\right)\)
2) \(=\left(x^2+8\right)^2-16x^2=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
3)
\(=x^4-x+x^2+x+1=x\left(x^3-1\right)+x^2+x+1=x\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4) \(=x^5-x^2+x^2+x+1=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
1.\(x^2-2021+2020=x^2-1=\left(x+1\right)\left(x-1\right)\)
2. \(x^4+64=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
3. \(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2+x+1\right)\)
4. \(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
a) \(x^{12}-3x^6+1\)
\(=\left(x^6\right)^2-2\cdot x^6\cdot1+1^2-x^6\)
\(=\left(x^6-1\right)^2-\left(x^3\right)^2\)
\(=\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)
\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)
\(=\left(x^2\right)^2+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x-1\right)^2\)
b) 2x2 - 3x - 27 = 2x2 + 6x - 9x - 27 = 2x(x + 3) - 9(x + 3) = (x + 3)(2x - 9)
\(x^2-7x+10\)
\(=x^2-2x-5x+10\)
\(=x\left(x-2\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x-5\right)\)
f) \(x^2-6x+5=\left(x^2-x\right)+\left(-5x+5\right)=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
g) \(x^4+64=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
\(x^2-6x+5\)
\(=\left(x^2-2.3x+3^2\right)-4\)
\(=\left(x-3\right)^2-2^2\)
\(=\left(x-3-2\right)\left(x-3+2\right)\)
\(=\left(x-5\right)\left(x-1\right)\)