Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2S=2(1+2+22+...+250)
2S=2+22+...+251
2S-S=(2+22+...+251)-(1+2+22+...+250)
S=251-1<251
=>S<251
\(S=1+2+2^2+....+2^{50}\)
\(2S=2+2^2+2^3+....+2^{51}\)
\(2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(S=2^{51}-1\)
Vì \(2^{51}-1< 2^{51}\)
\(\Rightarrow S< 2^{51}\)
\(2S=2+2^2+.........+2^{51}\)
\(2S-S=\left(2+2^2+.......+2^{51}\right)-\left(1+2+.......+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S<251
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+....+2^{51}\)
\(=>2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)
\(=>A=2^{51}-1< 2^{51}=B=>A< B\)
2M = 2+2^3+2^4+......+2^51
M = 2M - M = 2+2^3+2^4+.....+2^51 - (1+2^2+2^3+.....+2^51)
= 2+2^51 - 1 - 2^2
= 2^51 - 3
=> M < N
Tk mk nha
Đặt \(a=2^0+2^1+...+2^{50}\)
\(\Rightarrow2a=2^1+2^2+...+2^{51}\)
\(\Rightarrow2a-a=\left(2^1+2^2+...+2^{51}\right)-\left(2^0+2^1+...+2^{50}\right)\)
\(2a-a=2^1+2^2+...+2^{51}-2^0-2^1-2^{50}\)
\(\Rightarrow a=2^{51}-2^0<2^{51}\)
\(\Leftrightarrow a<2^{51}\)
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+...+2^{51}\)
\(A=2A-A=2^{51}-1<2^{51}\)