Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2S=2(1+2+22+...+250)
2S=2+22+...+251
2S-S=(2+22+...+251)-(1+2+22+...+250)
S=251-1<251
=>S<251
\(S=1+2+2^2+...........+2^{50}\)
\(\Leftrightarrow2S=2+2^2+...........+2^{50}+2^{51}\)
\(\Leftrightarrow2S-S=\left(2+2^2+.........+2^{51}\right)-\left(1+2+2^2+..........+2^{50}\right)\)
\(\Leftrightarrow S=2^{51}-1\)
\(\Leftrightarrow S< 2^{51}\)
\(A=1+2+2^2+2^3+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+...+2^{51}\)
\(A=2A-A=2^{51}-1<2^{51}\)
a)\(333^{444}=\left(333^4\right)^{111};444^{333}=\left(444^3\right)^{111}\)
Lại có \(333^4=3^4.111^4=81.111^4;444^3=4^3.111^3=64.111^3\)
Nên \(333^4>444^3\)
Suy ra \(333^{444}>444^{333}\)
b)\(5^{202}=\left(5^2\right)^{101}=25^{101};2^{505}=\left(2^5\right)^{101}=32^{101}\)
Suy ra \(2^{505}>5^{202}\)
\(S=1+2+2^2+....+2^{50}\)
\(2S=2+2^2+2^3+....+2^{51}\)
\(2S-S=\left(2+2^2+2^3+...+2^{51}\right)-\left(1+2+2^2+...+2^{50}\right)\)
\(S=2^{51}-1\)
Vì \(2^{51}-1< 2^{51}\)
\(\Rightarrow S< 2^{51}\)
\(2S=2+2^2+.........+2^{51}\)
\(2S-S=\left(2+2^2+.......+2^{51}\right)-\left(1+2+.......+2^{50}\right)\)
\(\Rightarrow S=2^{51}-1< 2^{51}\)
Vậy S<251