K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

2S=2(1+2+22+...+250)

2S=2+22+...+251

2S-S=(2+22+...+251)-(1+2+22+...+250)

S=251-1<251

=>S<251

27 tháng 9 2016

2.32_>2>8

=>2.25_>2n>23

=>26_>2n>23

=>n{6;5;4}

15 tháng 7 2017

8<n^n<2.32

5 tháng 11 2017

\(S=1+2+2^2+...........+2^{50}\)

\(\Leftrightarrow2S=2+2^2+...........+2^{50}+2^{51}\)

\(\Leftrightarrow2S-S=\left(2+2^2+.........+2^{51}\right)-\left(1+2+2^2+..........+2^{50}\right)\)

\(\Leftrightarrow S=2^{51}-1\)

\(\Leftrightarrow S< 2^{51}\)

1 tháng 3 2018

2M = 2+2^3+2^4+......+2^51

M = 2M - M = 2+2^3+2^4+.....+2^51 - (1+2^2+2^3+.....+2^51)

                   = 2+2^51 - 1 - 2^2

                   = 2^51 - 3

=> M < N

Tk mk nha

18 tháng 8 2015

S = \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)

Kết luận vậy S > 1/2

6 tháng 2 2017

S=1/2

28 tháng 6 2019

c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)

\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)

\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)

\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)

28 tháng 6 2019

a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)

Mà \(8^{10}< 9^{10}\)\(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên

\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

HÌNH NHƯ CÂU 1 EM LÀM ZÙI

13 tháng 3 2017

EM CŨNG THẾ

5 tháng 11 2017

bạn tham khảo nha, cách làm như vậy đó

Câu hỏi của Nguyễn Thị Mai Ca - Toán lớp 7 - Học toán với OnlineMath 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha 

thanks