Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)
\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)
vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)
c2
ta có
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
bài 5
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
3) M = 22010 - (22009 + 22008 + .... + 21 + 20)
Đặt N = 22009 + 22008 + .... + 21 + 20
=> 2N = 22010 + 22009 + .... + 22 + 21
=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + .... + 21 + 20)
=> N = 22010 - 1
Khi đó M = 22010 - (22010 - 1) = 1
4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000
34000 = 92000
C2 Ta có : 34000 = (34)1000 = 811000 (1)
Lại có 92000 = (92)1000 = 811000 (2)
Từ (1) (2) => 34000 = 92000
5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223
=> 2332 < 3223
2) Ta có n150 < 5225
=> (n5)75 < (53)75
=> n5 < 53
=> n5 < 125
Vì n là số nguyên lớn nhất => n = 2
M = \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{2015^2}\right)\)
M = \(\left(-\frac{1.3}{2.2}\right)\left(-\frac{2.4}{3.3}\right)\left(-\frac{3.5}{4.4}\right)....\left(-\frac{2014.2016}{2015.2015}\right)\)
M = \(\frac{\left(1.2.3....2014\right)\left(3.4.5...2016\right)}{\left(2.3.4.....2015\right)\left(2.3.4....2015\right)}\)
M = \(\frac{2016}{2015.2}\)
M = \(\frac{1008}{2015}\)
N = \(\frac{1}{2}\)=\(\frac{1008}{2016}\)
Vì \(\frac{1008}{2015}>\frac{1008}{2016}\)
=> M > N
\(2M=\frac{2^{103}+2}{2^{103}+1}=1+\frac{1}{2^{103}+1}\left(\cdot\right)\)
\(2N=\frac{2^{104}+2}{2^{104}+1}=1+\frac{1}{2^{104}+1}\left(\cdot\cdot\right)\)
\(\frac{1}{2^{103}+1}>\frac{1}{2^{104}+1}\Rightarrow1+\frac{1}{2^{103}+1}>1+\frac{1}{2^{104}+1}\left(\cdot\cdot\cdot\right)\)
Từ\(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow2M>2N\Leftrightarrow M>N.\)
2S=2(1+2+22+...+250)
2S=2+22+...+251
2S-S=(2+22+...+251)-(1+2+22+...+250)
S=251-1<251
=>S<251
Ta có : M = 1+2+22+23+...+250
=> 2M = 2+22+23+...+251
=> 2M - M = 251 - 1
=> M = 251 - 1
Mà N = 251 => M < N
Ta có
M = 1 + 2 + 22 + ... + 250
2M = 2 + 22 + 23 + ... + 251
2M - M = (2 + 22 + 23 + ... + 251) - (1 + 2 + 22 + ... + 250)
M = 251 - 1
Vì 251 - 1 < 251 nên M < N
Vậy M < N
Ủng hộ mk nha !!! ^_^
2M = 2+2^3+2^4+......+2^51
M = 2M - M = 2+2^3+2^4+.....+2^51 - (1+2^2+2^3+.....+2^51)
= 2+2^51 - 1 - 2^2
= 2^51 - 3
=> M < N
Tk mk nha
\(M>N\)