K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

Vì ABCD là hình thang cân (AC // CD) nên AD = BC; \(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}}\)

Xét ∆ACD và ∆BDC có

AD = BC (chứng minh trên);

\(\widehat {A{\rm{D}}C} = \widehat {BC{\rm{D}}}\) (chứng minh trên);

Cạnh CD chung.

Do đó ∆ACD = ∆BDC (c.g.c).

Suy ra AC = BD (hai góc tương ứng).

HQ
Hà Quang Minh
Giáo viên
20 tháng 7 2023

Xét tam giác DBC, ta có: 

O là trung điểm cạnh BD (tính chất hình chữ nhật)

OH // BC (cùng vuông góc với CD)

⇒ OH là đường trung bình tam giác BCD.

⇒ H là trung điểm của CD (đpcm).

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

a) Vì tứ giác ABCD là hình thoi nên AB = AD.

Suy ra ∆ABD có cân tại A.

b) Vì tứ giác ABCD là hình thoi nên AB = BC = CD = DA.

Xét ∆ABC và ∆ADC có:

AB = AD (chứng minh trên);

BC = CD (chứng minh trên);

Cạnh AC chung.

Do đó ∆ABC = ∆ADC (c.c.c)

Suy ra \(\)\(\widehat {{A_1}} = \widehat {{A_2}}\)(hai góc tương ứng)

Hay AC là đường phân giác của góc A.

Tam giác ABD cân tại A có AO là đường phân giác của góc A (vì AC là đường phân giác góc A) nên AO cũng là đường cao.

Khi đó AO ⊥ BD hay AC ⊥ BD.

Vậy AC vuông góc với BD và AC là đường phân giác của góc A.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a) Vì ABCD là hình bình hành nên AB // CD; AD // BC.

Suy ra \(\widehat {BAC} = \widehat {AC{\rm{D}}};\widehat {BCA} = \widehat {DAC}\)(hai góc so le trong).

Xét ∆ABC và ∆CDA có:

\(\widehat {BAC} = \widehat {AC{\rm{D}}}\) (chứng minh trên);

Cạnh AC chung.

 \(\widehat {BCA} = \widehat {DAC}\) (chứng minh trên);

Do đó ∆ABC = ∆CDA (g.c.g).

Suy ra AB = CD, AD = BC (các cặp cạnh tương ứng); \(\widehat {ABC} = \widehat {C{\rm{D}}A}\) (hai góc tương ứng).

b) Xét ∆ABD và ∆CDB có:

AB = CD (chứng minh trên);

AD = BC (chứng minh trên);

Cạnh BD chung.

Do đó ∆ABD = ∆CDB.

Suy ra \(\widehat {DAB} = \widehat {BC{\rm{D}}}\) (hai góc tương ứng).

c) Xét ∆AOB và ∆COD có:

\(\widehat {BAC} = \widehat {AC{\rm{D}}}\) (chứng minh trên);

AB = CD (chứng minh trên);

\(\widehat {BCA} = \widehat {DAC}\) (chứng minh trên);

Do đó ∆AOB = ∆COD (g.c.g).

Suy ra OA = OC, OB = OD (các cặp cạnh tương ứng).

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a) Vì ABCD là hình thang cân (AB // CD) nên \(\widehat {BAI} = \widehat {AIH}\)(hai góc so le trong).

Ta có AH ⊥ DC, BI ⊥ DC suy ra AH // BI.

Do đó \(\widehat {AIB} = \widehat {HAI}\) (hai góc so le trong).

Xét ∆AHI và ∆IBA có:

\(\widehat {BAI} = \widehat {AIH}\) (chứng minh trên);

Cạnh AI chung;

 \(\widehat {AIB} = \widehat {HAI}\) (hai góc so le trong).

Do đó ∆AHI = ∆IBA (c.g.c).

Suy ra AH = BI (hai cạnh tương ứng).

b) Vì ABCD là hình thang cân (AC // CD) nên \(\widehat C = \widehat D\).

Vì ∆AHD và ∆BIC có:

\(\widehat {AH{\rm{D}}} = \widehat {BIC} = {90^o}\) và \(\widehat C = \widehat D\) nên \(90^o - \widehat C = 90^o - \widehat {BIC} \Leftrightarrow \widehat {DAH} = \widehat {CBI}\) 

Xét ∆AHD và ∆BIC có:

\(\widehat {AH{\rm{D}}} = \widehat {BIC} = {90^o}\) (vì AH ⊥ DC, BI ⊥ DC, H ∈ CD, I ∈ CD);

\(AH = BI\) (chứng minh trên

\(\widehat {DAH} = \widehat {CBI}\) (chứng minh trên).

Do đó ∆AHD = ∆BIC (góc - cạnh - góc).

Suy ra AD = BC (hai cạnh tương ứng).

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

Ta có \(\widehat A = \widehat {{D_1}}\) mà hai góc này ở vị trí đồng vị nên AB // CD.

Suy ra tứ giác ABCD là hình thang.

Mặt khác hình thang ABCD có \(\widehat A = \widehat B\) nên ABCD là hình thang cân.

Do đó AD = BC (đpcm).

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.

Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:

\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)

Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).

Vậy x = 4 (đvđd).

HQ
Hà Quang Minh
Giáo viên
7 tháng 9 2023

Do \(\widehat{A}+\widehat{D}=120^o+60^o=180^o\) 

\(\Rightarrow AB//CD\)

\(\Rightarrow\) ABCD là hình thang.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a) Nối AC, BD (như hình vẽ

Ta có AB = AD hay hai điểm A cách đều hai đầu mút B và D;

CB = CD hay hai điểm C cách đều hai đầu mút B và D;

Do đó, hai điểm A và C cách đều hai đầu mút B và D.

Vậy AC là đường trung trực của đoạn thẳng BD.

b) Gọi I là giao điểm của AC và BD.

Vì AC là đường trung trực của đoạn thẳng BD nên AC ⊥ BD.

• Xét tam giác ABD cân tại A (vì AB = AD) có AI là đường cao (vì AI ⊥ BD)

Nên AI cũng là tia phân giác của \(\widehat {BA{\rm{D}}}\) hay \(\widehat {{A_1}} = \widehat {{A_2}}\)

Suy ra \(\widehat {{A_1}} = \widehat {{A_2}} = \widehat {B{\rm{D}}A}:2 = {100^o}:2 = {50^o}\)

• Xét tam giác BCD cân tại C (vì BC = CD) có CI là đường cao (vì AC ⊥ BD)

Nên CI cũng là tia phân giác của \(\widehat {BC{\rm{D}}}\) hay \(\widehat {{C_1}} = \widehat {{C_2}}\)

Suy ra \(\widehat {{C_1}} = \widehat {{C_2}} = \widehat {BC{\rm{D}}}:2 = {60^o}:2 = {30^o}\)

• Xét tam giác ACD có: \(\widehat {{A_1}} + \widehat {{C_1}} + \widehat {A{\rm{D}}C} = {180^o}\) (định lí tổng ba góc trong một tam giác).

Hay 50°+30°+\(\widehat {A{\rm{D}}C}\)=180°

Suy ra \(\widehat {A{\rm{D}}C}\)=180°−50°−30°=100°

Xét tứ giác ABCD có:

\(\widehat {BA{\rm{D}}} + \widehat {ABC} + \widehat {BC{\rm{D}}} + \widehat {A{\rm{D}}C} = {360^o}\)(định lí tổng bốn góc của một tứ giác).

Hay 100°+\(\widehat {ABC}\)+60°+100°=360°

Suy ra \(\widehat {ABC}\)+260°=360o

Do đó \(\widehat {ABC}\)=360°−260°=100o

Vậy \(\widehat {ABC}\)=100° ;\(\widehat {A{\rm{D}}C}\)=100° 

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

Áp dụng định lí về tổng ba góc trong một tam giác đối với tam giác ABD và CBD, ta có:

\(\begin{array}{l}\widehat A + \widehat {{B_1}} + \widehat {{D_1}} = {180^o}\\\widehat C + \widehat {{B_2}} + \widehat {{D_2}} = {180^o}\end{array}\)

Khi đó, tứ giác ABCD có:

\(\widehat A + \widehat B + \widehat C + \widehat D = \widehat A + \widehat {{B_1}} + \widehat {{D_1}} + \widehat C + \widehat {{B_2}} + \widehat {{D_2}} = 180^\circ  + 180^\circ  = 360^\circ \)

 Vậy \(\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\)